Based on the comprehensive utilization of energy storage, photovoltaic power generation, and intelligent charging piles, photovoltaic (PV)-storage charging stations can provide green energy for electric vehicles (EVs), which can significantly improve the green level of the transportation industry. However, there are many challenges in the PV-storage charging station planning process, making it theoretically and practically significant to study approaches to planning. This paper promotes a bi-level optimization planning approach for PV-storage charging stations. First, taking PV-storage charging stations and EV users as the upper- and lower-level problems, respectively, during the planning process, a bi-level optimization model for PV-storage charging stations considering user utility is established for capacity allocation and user behavior-based electricity pricing. Second, the model is converted into a single-level mixed-integer linear programming model using the piecewise linear utility function, Karush–Kuhn–Tucker (KKT) conditions, and linearization methods. Finally, to verify the validity of the proposed model and the solution algorithm, a commercial solver is used to solve the optimization model and obtain the planning scheme. The results show that the proposed bi-level optimization model can provide a more economical and reasonable planning scheme than the single-level model, and can reduce the investment cost by 8.84%, operation and maintenance cost by 13.23%, and increase net revenue by 5.11%.
This paper proposes a coordinated active–reactive power optimization model for an active distribution network with energy storage systems, where the active and reactive resources are handled simultaneously. The model aims to minimize the power losses, the operation cost, and the voltage deviation of the distribution network. In particular, the reactive power capabilities of distributed generators and energy storage systems are fully utilized to minimize power losses and improve voltage profiles. The uncertainties pertaining to the forecasted values of renewable energy sources are modelled by scenario-based stochastic programming. The second-order cone programming relaxation method is used to deal with the nonlinear power flow constraints and transform the original mixed integer nonlinear programming problem into a tractable mixed integer second-order cone programming model, thus the difficulty of problem solving is significantly reduced. The 33-bus and 69-bus distribution networks are used to demonstrate the effectiveness of the proposed approach. Simulation results show that the proposed coordinated optimization approach helps improve the economic operation for active distribution network while improving the system security significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.