To improve essential oil quality, especially to reserve the thermal instability of compounds, supercritical CO2 extraction (SFE) was applied to recover essential oil from Cymbopogon citronella leaves. A response surface methodology was applied to optimize the extraction process. The highest essential oil yield was predicted at extraction time 120 min, extraction pressure 25 MPa, extraction temperature 35°C, and CO2 flow 18 L/h for the SFE processing. Under these experimental conditions, the mean essential oil yield is 4.40%. In addition, the chemical compositions of SFE were compared with those obtained by hydrodistillation extraction (HD). There were 41 compounds obtained of SFE, while 35 compounds of HD. Alcohols and aldehydes were the main compositions in the essential oils. Furthermore, the antioxidant activities and antimicrobial of essential oils obtained by HD and the evaluated condition of SFE were compared. Results showed that the antioxidant activities of SFE oil are better than those of HD. Minimum inhibitory concentrations (MICs) were determined by the microdilution method. Essential oil obtained from SFE and HD exhibited a significant antimicrobial activity against all tested microorganisms. It is confirmed that the SFE method can be an alternative processing method to extract essential oils from Cymbopogon citronella leaves.
The strain Lsc-8 can produce a current density of 33.08 µA cm−2 using carboxymethylcellulose (CMC) as a carbon source in a three-electrode configuration. A co-culture system of strain Lsc-8 and Geobacter sulfurreducens PCA was used to efficiently convert cellulose into electricity to improve the electricity generation capability of microbial fuel cells (MFCs). The maximum current density achieved by the co-culture with CMC was 559 μA cm−2, which was much higher than that of strain Lsc-8 using CMC as the carbon source. The maximum power density reached 492.05 ± 52.63 mW cm−2, which is much higher than that previously reported. Interaction mechanism studies showed that strain Lsc-8 had the ability to secrete riboflavin and convert cellulose into acetic acid, which might be the reason for the high electrical production performance of the co-culture system. In addition, to the best of our knowledge, a co-culture or single bacteria system using agricultural straw as the carbon source to generate electricity has not been reported. In this study, the maximum current density of the three-electrode system inoculated with strain Lsc-8 was 14.56 μA cm−2 with raw corn stover as the sole carbon source. Raw corn stover as a carbon source was also investigated for use in a co-culture system. The maximum current density achieved by the co-culture was 592 μA cm−2. The co-culture system showed a similar electricity generation capability when using raw corn stover and when using CMC. This research shows for the first time that a co-culture or single bacteria system can realize both waste biomass treatment and waste power generation.
A facultative exoelectrogen, Cellulomonas fimi strain Clb-11, was isolated from polluted river water. This strain could generate electricity in microbial fuel cells (MFCs) with carboxymethyl cellulose (CMC) as the carbon source, and the maximum output power density was 12.17 ± 2.74 mW·m−2. In addition, Clb-11 could secrete extracellular chromate reductase or extracellular electron mediator to reduce Cr(VI) to Cr(III). When the Cr(VI) concentration was less than 0.5 mM in Luria-Bertani (LB) medium, Cr(VI) could be completely reduced by Clb-11. However, the Clb-11 cells swelled significantly in the presence of Cr(VI). We employed transcriptome sequencing analysis to identify genes involved in different Cr(VI) stress responses in Clb-11. The results indicate that 99 genes were continuously upregulated while 78 genes were continuously downregulated as the Cr(VI) concentration increased in the growth medium. These genes were mostly associated with DNA replication and repair, biosynthesis of secondary metabolites, ABC transporters, amino sugar and nucleotide sugar metabolism, and carbon metabolism. The swelling of Clb-11 cells might have been related to the upregulation of the genes atoB, INO1, dhaM, dhal, dhak, and bccA, which encode acetyl-CoA C-acetyltransferase, myo-inositol-1-phosphate synthase, phosphoenolpyruvate-glycerone phosphotransferase, and acetyl-CoA/propionyl-CoA carboxylase, respectively. Interestingly, the genes cydA and cydB related to electron transport were continuously downregulated as the Cr(VI) concentration increased. Our results provide clues to the molecular mechanism of Cr(VI) reduction by microorganisms in MFCs systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.