Photothermal conversion with high efficiency depends on not only absorption but also on the process and the speed of the photothermal conversion. Herein, we report the combination of carbon fibers (CFs) and metal nanoparticles (NPs) with a localized surface plasma resonance (LSPR) effect. On investigating their optical properties and the photothermal conversion in water evolution, we observe that all of the metal NPs/CFs perform better than the CFs. The rate of water evolution on Au NPs/CFs is up to 9.9 ± 0.2 kg•m −2 •h −1 and those of Ag NP/CFs and Cu NPs/CFs are 8.6 ± 0.1 and 7.1 ± 0.2 kg•m −2 •h −1 , respectively, which are higher than that of the CFs (7.0 ± 0.3 kg•m −2 •h −1 ). Heat localization and the LSPR effect of metal nanoparticles are considered the main reasons for the enhanced photothermal conversion. The mechanism of the LSPR effect enhancing the photothermal conversion is that the metal NP loading provides more paths for energy conversion and accelerates the photothermal conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.