BackgroundThe aim of this study was to investigate whether patients with basal ganglia stroke and patients with pontine stroke have different types of functional connectivity (FC) alterations in the early chronic phase.Material/MethodsWe included 14 patients with pontine stroke, 17 patients with basal ganglia stroke, and 20 well-matched healthy controls (HCs). All of them underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The independent component analysis (ICA) approach was applied to extract information regarding the default-mode network (DMN), including anterior DMN (aDMN) and posterior DMN (pDMN) components and the sensorimotor network (SMN).ResultsCompared with HCs, patients with basal ganglia stroke exhibited significantly reduced FC in the left precuneus of the pDMN, right supplementary motor area (SMA), and right superior frontal gyrus (SFG) of the SMN. Additionally, FC in the left medial prefrontal gyrus (MFG) of the aDMN, right precuneus and right posterior cingulate cortex (PCC) of the pDMN, and left middle cingulate gyrus (mid-CC) of the SMN decreased in patients with pontine stroke.ConclusionsThe different patterns of FC damage in patients with basal ganglia stroke and patients with pontine stroke in the early chronic phase may provide a new method for investigating lesion-induced network plasticity.
Background and purpose
This study was conducted to investigate whether capsular stroke (CS) and pontine stroke (PS) have different topological alterations of structural connectivity (SC) and functional connectivity (FC), as well as correlations of SC‐FC coupling with movement assessment scores.
Methods
Resting‐state functional magnetic resonance imaging and diffusion tensor imaging were prospectively acquired in 46 patients with CS, 36 with PS, and 29 healthy controls (HCs). Graph theoretical network analyses of SC and FC were performed. Patients with left and right lesions were analyzed separately.
Results
With regard to FC, the PS and CS groups both showed higher local efficiency than the HCs, and the CS group also had a higher clustering coefficient (Cp) than the HCs in the right lesion analysis. With regard to SC, the PS and CS groups both showed different normalized clustering coefficient (γ), small‐worldness (σ), and characteristic path length (Lp) compared with the HC group. Additionally, the CS group showed higher normalized characteristic path length (λ) and a lower Cp than the HCs and the PS group showed higher λ and lower global efficiency than the HCs in the right‐lesion analysis. However, γ, σ, Cp and Lp were only significantly different in the PS and CS groups compared with the HC group in the right‐lesion analysis. Importantly, the CS group was found to have a weaker SC‐FC coupling than the PS group and the HC group in the right‐lesion analysis. In addition, both patient groups had weaker structural‐functional connectome correlation than the HCs.
Conclusions
The CS and PS groups both showed FC and SC disruption and the CS group had a weaker SC‐FC coupling than the PS group in the right lesion analysis. This may provide useful information for individualized rehabilitative strategies.
The study aimed to explore the cortical thickness and gyrification abnormalities in acute brainstem ischemic patients in both the ipsilateral and contralateral hemisphere compared with healthy controls. Structural magnetic resonance imaging data were prospectively acquired in 48 acute brainstem ischemic patients, 21 patients with left lesion and 27 with right lesion, respectively. Thirty healthy controls were recruited. Cortical morphometry based on surface-based data analysis driven by CAT12 toolbox implemented in SPM12 was used to compare changes in cortical thickness and gyrification. Significant decreases of cortical thickness loss were found in bilateral cerebral hemispheres of the brainstem ischemic patients compared to the healthy controls (P < .05, family-wise error (FWE)-corrected). We also found significant gyrification decreases in the insula, transverse temporal, supramarginal of the ipsilateral on hemisphere in the right brainstem ischemic patients compared to the healthy controls (P < .05, FWE-corrected). Brainstem ischemic patients have widely morphological changes in the early phase and may be helpful in designing individualized rehabilitative strategies for these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.