Three separate and parallel North American Carduelis evolutionary radiations have been identified. North American siskin radiation (starting about 2.7 million years ago) comprises siskin, Antillean siskin, black-capped siskin, pine siskin and pine siskin perplexus. C. spinus could have passed to America through the Beringia or Greenland coast and, during Pliocene Epoch, reached the Antilles and evolved into Antillean siskin (C. dominicensis), endemic to Hispaniola Island. It is ancestor of pine siskin. Pine Siskin, also a sister taxon of C. spinus, thrives in North America from Alaska to Guatemala since about 0.2 MYA. It lives below the Mexican Isthmus in the highlands from northern Chiapas (Mexico) to western Guatemala. Black-capped siskin (C. atriceps) is a sister species of C. spinus, with which it shares habitat and territory. C. pinus green-backed morphs may have been mistaken by C. atriceps which is a grey-backed finch. Mesoamerican goldfinch radiation (starting about 5 million years ago) includes C. tristis (American goldfinch), C. psaltria (lesser goldfinch) and C. lawrencei (Lawrence's goldfinch). They all thrive in western United States and Mexico, down to northern South America. C. psaltria is a North American bird that colonized South American habitats to North Peru and evolved into darker head and back while going southwards. South American siskin radiation started about 3.5 million years ago; parental C. notata thrives in Mexican mountains and successfully colonized South America, giving rise to this radiation. South American Carduelis radiation occurred only when mesothermal plants from the Rocky Mountains invaded the Andean spine after emergence of the Panama Isthmus.
Amerindian Mapuche (Araucanians) are now living in Chile and Argentina at both sides of Andean Mountains. They are anthropologically and genetically different from southernmost South America Patagonian Amerindians. Most of the HLA alleles found in our Mapuche sample are frequent or very frequent in North and South America Amerindians: (1) Class I: A*02:01, A*03:01, A*68:01, B*39:09, B*51:01, (2) Class II: DRB1*03:01, DRB1*04:03, DRB1*07:01, DRB1*08:02, DRB1*14:02, DRB1*16:02. One of the nine most frequent extended haplotypes seems to be from European origin, suggesting the existence of a degree of admixture with Europeans in our Mapuche sample. It has been calculated of about 11 % admixture. Three of the extended haplotypes are also found in other Amerindians and five of them are newly found in Mapuche Amerindians: A*68:01-B*39:09-DRB1*08:02-DQB1*04:02; A*68:01-B*51:01-DRB1*04:03-DQB1*03:02; A*29:01-B*08:01-DRB1*03:01-DQB1*02:01; A*02:01-B*15:01-DRB1*04:03-DQB1*03:02; A*33:01-B*14:02-DRB1*07:01-DQB1*03:03. The medical importance of calculating HLA profile is discussed on the diagnostic (HLA and disease) and therapeutical bases of HLA pharmacogenomics and on the construction of a virtual transplantation HLA list profile. Also, anthropological conclusions are drawn.
HLA genes (class I and II) have been studied in a Kurd population from Iran (North West towns of Saqqez and Baneh, close to Irak border). Kurds speak an Iranian language. HLA Kurd profile has been compared with those of Central Asians, Siberians, Mediterraneans and other worldwide populations; a total of 7746 chromosomes were used for computer comparisons. Both Neighbor-joining and correspondence genetic analyses place Kurds in the Mediterranean population cluster, close to Iranians, Europeans and Caucasus populations (Svan and Georgian). New extended HLA haplotypes are described, being A*02:01-B*35:01-DRB1*01:01-DQB1*05:01 and A*24:02-B*18:09-DRB1*11:01- DQB1*03:01 the most frequent ones; other Kurd extended haplotypes are also found in Azeris and Palestinians. This research work may be useful for: 1) future Iranian Kurds transplantation regional programs, 2) HLA pharmacogenomics in order to practise a preventive Medicine and drug side effects, and 3) Epidemiology of HLA-associated diseases in Kurds.
Background: HLA-G molecules are immunosuppressive and avoid fetal rejection by giving negative signals to maternal immune system from fetal trophoblast cell surface. HLA-G genes have been associated to different pathologies: Spontaneous abortions, autoimmunity, tumor progression, transplant rejection and infection. In addition, different World populations show remarkable different HLA-G allele frequencies in the allele that does not produce a full HLA-G molecule (HLA-G*05N); this allele is almost absent in studied Amerindians. Objectives: The aim is to study HLA-A.-B,-DRB1 and –G alleles and extended haplotypes in Amerindians for the first time. This may be useful to asses HLA-G epidemiology, association to disease and Preventive Medicine in Amerindians. Methods: HLA-A,-B and -DRB1 have been typed by using standard automatic protocols. HLA-G alleles have been detected by direct HLA-G exon 2, exon 3 and exon 4 DNA sequencing. Computer calculations have been done by specific standard methods. Results: HLA-A,-B,-DRB1 and –G extended haplotypes have been calculated in Amerindians for the first time. Also, their HLA-G frequencies have been compared with worldwide populations. Conclusion: Low frequencies of null HLA-G*01:05N allele are found in Amerindians. The extended haplotypes with this allele bear other typical Amerindian HLA-DRB1 alleles and its origin is discussed. HLA-G allele frequency profile is closer to that of Europeans than to that of Far East Asians. Our findings are useful to Preventive Medicine and Epidemiology associated to Fertility and HLA-G associated pathology and transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.