A diverse array of chemical agents have been self administered by humans to alter the psychological state. Such drugs of abuse include both stimulants and depressants of the central nervous system. However, some commonalties must underlie the neurobiological actions of these drugs, since the desire to take the drugs often crosses from one drug to another. Studies have emphasized a role of the ventral striatum, especially the nucleus accumbens, in the actions of all drugs of abuse, although more recent studies have implicated larger regions of the forebrain. Induction of immediate-early genes has been studied extensively as a marker for activation of neurons in the central nervous system. In this review, we survey the literature reporting activation of immediate-early gene expression in the forebrain, in response to administration of drugs of abuse. All drugs of abuse activate immediate-early gene expression in the striatum, although each drug induces a particular neuroanatomical signature of activation. Most drugs of abuse activate immediate-early gene expression in several additional forebrain regions, including portions of the extended amygdala, cerebral cortex, lateral septum, and midline/intralaminar thalamic nuclei, although regional variations are found depending on the particular drug administered. Common neuropharmacological mechanisms responsible for activation of immediate-early gene expression in the forebrain involve dopaminergic and glutamatergic systems. Speculations on the biological significance and clinical relevance of immediate-early gene expression in response to drugs of abuse are presented.
Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.
To determine the locations of neurons in the rat brain expressing substance P and neurokinin A mRNA, we performed in situ hybridization with a radiolabeled cRNA probe that was complementary to alpha-, beta-, and gamma-preprotachykinin mRNA. Several types of controls indicated specificity of the labeling. Brain regions containing many labeled neurons include the anterior olfactory nucleus, layer II of the olfactory tubercle, the islands of Calleja, the nucleus accumbens, the caudate-putamen, portions of the amygdala and hypothalamus, the medial habenular nucleus, nuclei of the pontine tegmentum, several raphe nuclei, several portions of the reticular formation, and the nucleus of the solitary tract. Less frequent labeled neurons were also found in many other regions of the brain. These results extend many previous immunocytochemical studies of the locations of neurons containing immunoreactive substance P, neurokinin A, and neuropeptide K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.