With stochastic integer programming as the motivating application, we investigate techniques to use integrality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in the extended variable space, and Benders cuts are then used to project the resulting improved relaxation, and (ii) project-and-cut, where integrality constraints are used to derive cuts directly in the Benders reformulation. For the case of split cuts, we demonstrate that although these approaches yield equivalent relaxations when considering a single split disjunction, cut-and-project yields stronger relaxations in general when using multiple split disjunctions. Computational results illustrate that the difference can be very large, and demonstrate that using split cuts within the cut-and-project framework can significantly improve the performance of Benders decomposition.
In this paper, we study the strength of Chvátal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined by this single inequality with variable bounds, and finally use the inequalities describing the integer hull as cutting-planes. Our first main result is to show that for packing and covering IPs, the CG and aggregation closures can be 2-approximated by simply generating the respective closures for each of the original formulation constraints, without using any aggregations. On the other hand, we use computational experiments to show that aggregation cuts can be arbitrarily stronger than cuts from individual constraints for general IPs. The proof of the above stated results for the case of covering IPs with bounds require the development of some new structural results, which may be of independent interest. Finally, we examine the strength of cuts based on k different aggregation inequalities simultaneously, the so-called multi-row cuts, and show that every packing or covering IP with a large integrality gap also has a large k-aggregation closure rank. In particular, this rank is always at least of the order of the logarithm of the integrality gap.
Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in general. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting the decisions at each stage to be an affine function of the observed uncertain parameters. Finding an optimal LDR is a static optimization problem that provides an upper bound on the optimal value of the MSLP, and, under certain assumptions, can be formulated as an explicit linear program. Similarly, as proposed by Kuhn, Wiesemann, and Georghiou ("Primal and dual linear decision rules in stochastic and robust optimization" Math. Program. 130, 177-209, 2011) a lower bound for an MSLP can be obtained by restricting decisions in the dual of the MSLP to follow an LDR. We propose a new approximation approach for MSLPs, two-stage LDRs. The idea is to require only the state variables in an MSLP to follow an LDR, which is sufficient to obtain an approximation of an MSLP that is a two-stage stochastic linear program (2SLP). We similarly propose to apply LDR only to a subset of the variables in the dual of the MSLP, which yields a 2SLP approximation of the dual that provides a lower bound on the optimal value of the MSLP. Although solving the corresponding 2SLP approximations exactly is intractable in general, we investigate how approximate solution approaches that have been developed for solving 2SLP can be applied to solve these approximation problems, and derive statistical upper and lower bounds on *
Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in [Formula: see text] such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called discretization assumptions reduce the search space of the realization to a finite discrete one, which can be explored via the branch-and-prune (BP) algorithm. Given a discretization vertex order in G, the BP algorithm constructs a binary tree where the nodes at a layer provide all possible coordinates of the vertex corresponding to that layer. The focus of this paper is on finding optimal BP trees for a class of discretizable DGPs. More specifically, we aim to find a discretization vertex order in G that yields a BP tree with the least number of branches. We propose an integer programming formulation and three constraint programming formulations that all significantly outperform the state-of-the-art cutting-plane algorithm for this problem. Moreover, motivated by the difficulty in solving instances with a large and low-density input graph, we develop two hybrid decomposition algorithms, strengthened by a set of valid inequalities, which further improve the solvability of the problem. Summary of Contribution: We present a new model to solve a combinatorial optimization problem on graphs, MIN DOUBLE, which comes from the highly active area of distance geometry and has applications in a wide variety of fields. We use integer programming (IP) and present the first constraint programming (CP) models and hybrid decomposition methods, implemented as a branch-and-cut procedure, for MIN DOUBLE. Through an extensive computational study, we show that our approaches advance the state of the art for MIN DOUBLE. We accomplish this by not only combining generic techniques from IP and CP but also exploring the structure of the problem in developing valid inequalities and variable fixing rules. Our methods significantly improve the solvability of MIN DOUBLE, which we believe can also provide insights for tackling other problem classes and applications.
We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower scheduling costs by exploiting the presence of alternative server configurations that yield similar quality-of-service. We find that a branch-and-cut algorithm based on Benders decomposition may fail due to the weakness of the relaxation bound. We propose a novel application of mixed-integer rounding to improve the Benders cuts used in this algorithm, a technique that is applicable to any stochastic integer program with integer first-stage decision variables. Numerical examples illustrate the computational efficiency of the proposed approach and the potential benefit of solving the integrated model compared to considering the staffing and scheduling problems separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.