The present study was undertaken to evaluate the in vivo analgesic activities of the extracts prepared from the aerial parts and roots of Scrophularia kotscyhana and to isolate the bioactive metabolites from the most active extract. Analgesic activities of all extracts and subextracts at the doses of 5, 10 and 30 mg/kg (i.p.) were examined using hot plate test in mice. Among the tested extracts, MeOH extract prepared from the aerial parts and the n-butanol subextract prepared thereof displayed the best analgesic activity at all doses. Phytochemical studies on n-butanol subextract led to the isolation of two new iridoid glycosides as an inseparable mixture, 8-O-acetyl-4'-O-(E)-(p-coumaroyl)-harpagide (1) and 8-O-acetyl-4'-O-(Z)-(p-coumaroyl)-harpagide (2) along with five known secondary metabolites, β-sitosterol 3-O-β-glucopyranoside (3), apigenin 7-O-β-glucopyranoside (4), apigenin 7-O-rutinoside (5), luteolin 7-O-β-glucopyranoside (6) and luteolin 7-O-rutinoside (7). The iridoid mixture (1 and 2), 3 and 4 elicited significant inhibition of pain at 5 mg/kg dose.
Non-steroidal anti-inflammatory drugs are drugs with analgesic, antipyretic, and anti-inflammatory effects. This study uses in vitro methods to investigate the potential and unknown genotoxic effects of dexketoprofen trometamol, an active substance in painkillers, on healthy human lymphocytes. In this study, a cytokinesis-block micronucleus cytome assay is used to investigate potential clastogenic, aneugenic activity and to identify chromosome breakages caused by the active drug substance dexketoprofen trometamol; a comet assay is performed to identify the genotoxic damage resulting from DNA single-strand breaks; a real-time reverse transcription polymerase chain reaction panel system is used to evaluate the potential negative effects on the expression of the genes responsible for DNA damage assessment. Dexketoprofen trometamol induces toxic effects in healthy human lymphocytes at concentrations of 750-1000 µg/mL and above, and shows clastogenic, aneugenic activity by inducing micronucleus formations at exposures of 750-500 µg/mL. At concentration intervals of 1000, 500, 250, 100 µg/mL, dexketoprofen trometamol also resulted in DNA damage in the form of strand breaks, as demonstrated by highly significant increases in DNA tail length and density comet parameters when compared to spontaneous values. Human lymphocytes exposed to 750-100 µg/mL dexketoprofen trometamol were found to have significantly increased levels of expression of the XPC, XRCC6, PNKP genes in the DNA damage signaling pathway. It can be concluded that dexketoprofen trometamol may have cytotoxic, cytostatic, genotoxic effects on healthy human lymphocytes in vitro, depending on the concentration and duration of exposure. It is anticipated that this outcome will be supported by advanced studies.
The species belonging to Scrophularia genus grow mainly in Irano-Turanian and Mediterranean regions and have been used as folk remedy for inflammatory-related diseases since ancient times. The present study was aimed to evaluate the anti-inflammatory activity of the extracts of Scrophularia kotschyana as well as the isolated compounds. The aerial parts and the roots of the plant were separately extracted with methanol. Anti-inflammatory activities of both extracts were evaluated with formalin test in mice. As the methanolic extract of the aerial parts significantly ( p < .05) inhibited inflammation, it was then submitted to successive solvent extractions with n-hexane, dichloromethane, ethyl acetate and n-butanol to yield subextracts. Anti-inflammatory activities of the subextracts were evaluated within the same test system. Among the subextracts tested, the n-butanol subextract produced a significant ( p < .05) anti-inflammatory activity at all doses (5, 10, and 30 mg/kg, ip.). Sequential chromatographic separation of the n-butanol subextract yielded 8-O-acetyl-4′- O-( E)- p-coumaroylharpagide, 8- O-acetyl-4′- O-( Z)- p-coumaroylharpagide, β-sitosterol 3- O-β-glucopyranoside, apigenin 7- O-β-glucopyranoside, apigenin 7- O-rutinoside, luteolin 7- O-β-glucopyranoside and luteolin 7- O-rutinoside. The anti-inflammatory activities of the isolates were evaluated at 5 mg/kg dose. Luteolin 7- O-β-glucopyranoside and apigenin 7- O-rutinoside caused a significant ( p < .05) inhibition of oedema formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.