Time-resolved stereoscopic PIV was used to investigate the curvature-induced structures downstream of a 90 • bend at Reynolds numbers between 20 × 10 3 and 115 × 10 3 . Data were taken at three downstream locations to investigate the evolution of the structures. Snapshot proper orthogonal decomposition (POD) analysis shows that the most energetic structure is not the well-known Dean motion but a bimodal single cell structure with alternating direction of rotation, called the 'swirl switching' mode. The strengths of the Dean motion and the swirl-switching structures are similar, indicating that the difference in energy is related to their duration of occurrence, where the Dean motion is associated with a comparatively rapid transition between the two states in the swirl switching mode.
Purge air is injected through seals in the hub and shroud of axial turbines in order to prevent hot gas ingestion into the inter-stage gaps. An investigation into the losses involved with the injection of purge air has been undertaken, with the objectives of answering where the losses are generated, how they are generated, and what are the most effective ways for reducing them. In order to address these questions, a consistent framework for interpreting entropy generation as a measure of loss is developed for turbomachinery applications with secondary air streams. A procedure for factoring out distinct effects is also presented. These tools, applied to steady computations, elucidate four routes though which change in loss generation is brought about by injection of purge air: a shear layer between purge and main streams, interaction with the passage vortex system that generates radial velocity gradients, changes in wetted loss and tip clearance flow due to an increased degree of reaction, and the potential for reducing tip clearance flow for the case of purge flow injected from the shroud. An emphasis is placed on tracing these effects to specific purge flow characteristics that drive them. The understanding gained provides a rationale for the observed sensitivity of purge flow losses to the design parameters purge air mass fraction and swirl, compared to purge slot axial inclination and gap width. Pre-swirling of purge flow is less effective in mitigating losses in the case of shroud-injection, since there is a tradeoff with the tip clearance flow suppression effect.
Purge air is injected through seals in the hub and shroud of axial turbines in order to prevent hot gas ingestion into the inter-stage gaps. An investigation into the losses involved with the injection of purge air has been undertaken, with the objectives of answering where the losses are generated, how they are generated, and what are the most effective ways for reducing them. In order to address these questions, a consistent framework for interpreting entropy generation as a measure of loss is developed for turbomachinery applications with secondary air streams. A procedure for factoring out distinct effects is also presented. These tools, applied to steady computations, elucidate four mechanisms by which change in loss generation is brought about due to injection of purge air: a shear layer between purge and main streams, interaction with the passage vortex system that generates radial velocity gradients, changes in wetted loss and tip clearance flow due to an increased degree of reaction, and the potential for reducing tip clearance flow for the case of purge flow injected from the shroud. An emphasis is placed on tracing these effects to specific purge flow characteristics that drive them. The understanding gained provides a rationale for the observed sensitivity of purge flow losses to the design parameters purge air mass fraction and swirl, compared to purge slot axial inclination and gap width. Preswirling of purge flow is less effective in mitigating losses in the case of shroud-injection, since there is a tradeoff with the tip clearance flow suppression effect.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.