Wp(IRn)Wp(IRn) uzayı ve bu uzaya ait bazı özellikler Krogstad [1] tarafından ispat edilmiştir. Bu çalışmada, Krogstad tarafından tanımlanan bu uzayın p=1p=1 için özel durumu olan W(IRn)W(IRn) uzayı ele alındı. ww, IRIR reel sayılar kümesinde Beurling-Domar koşullarını sağlayan ağırlık fonksiyonu olmak üzere bir Ww(IR)Ww(IR) uzayı ve bu uzay üzerinde ∥.∥w‖.‖w normu tanımlandı. Ww(IR)Ww(IR) uzayının, ∥.∥w‖.‖w normuna göre bir Banach uzayı olduğu ispatlandı. (Ww(IR),∥.∥w)(Ww(IR),‖.‖w) uzayının bir Banach cebiri, ötelemeler altında invaryant ve kuvvetli invaryant olduğu gösterildi. Ayrıca, (Ww(IR),∥.∥w)(Ww(IR),‖.‖w) uzayının Soyut Segal cebiri ve Banach fonksiyon uzayı olduğu ispatlandı. w1w1, w2w2, IRIR üzerinde ağırlık fonksiyonları olmak üzere Ww1(IR)Ww1(IR)W(w1)(IR) ve $W_{w_2}(IR)$W(w2)(IR) uzayları arasındaki kapsama özellikleri araştırıldı.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.