Objective
Diabetic hepatocellular carcinoma (HCC) patients have high mortality and metastasis rates. Diabetic conditions promote neutrophil extracellular traps (NETs) generation, which mediates HCC metastasis and invasion. However, whether and how diabetes‐induced NETs trigger HCC invasion is largely unknown. Here, we aimed to observe the effects of diabetes‐induced NETs on HCC invasion and investigate mechanisms relevant to a DNA sensor cyclic GMP‐AMP synthase (cGAS).
Methods
Serum from diabetic patients and healthy individuals was collected. Human neutrophil‐derived NETs were isolated for stimulating HCC cell invasion. Data from the SEER and TCGA databases were used for bioinformatics analysis. In HCC cells and allograft models, NETs‐triggered invasion was observed.
Results
Diabetic HCC patients had poorer survival than non‐diabetic ones. Either diabetic serum or extracted NETs caused HCC invasion. Induction of diabetes or NETosis elicited HCC allograft invasion in nude mice. HCC cell invasion was attenuated by the treatment with DNase1. In TCGA_LIHC, an extracellular DNase DNASE1L3 was downregulated in tumor tissues, while function terms (the endocytic vesicle membrane, the NF‐κB pathway and extracellular matrix disassembly) were enriched. DNASE1L3 knockdown in LO2 hepatocytes or H22 cell‐derived allografts facilitated HCC invasion in NETotic or diabetic nude mice. Moreover, exposure of HCC cells to NETs upregulated cGAS and the non‐canonical NF‐κB pathway and induced expression of metastasis genes (
MMP9
and
SPP1
). Both cGAS inhibitor and NF‐κB RELB knockdown diminished HCC invasion caused by NETs DNA. Also, cGAS inhibitor was able to retard translocation of NF‐κB RELB.
Conclusion
Defective DNASE1L3 aggravates NETs DNA‐triggered HCC invasion on diabetic conditions via cGAS and the non‐canonical NF‐κB pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.