Discovery of two-dimensional (2D) topological insulator such as group-V films initiates challenges in exploring exotic quantum states in low dimensions. Here, we perform first-principles calculations to study the geometric and electronic properties in 2D arsenene monolayer with hydrogenation (HAsH). We predict a new σ-type Dirac cone related to the px,y orbitals of As atoms in HAsH, dependent on in-plane tensile strain. Noticeably, the spin-orbit coupling (SOC) opens a quantum spin Hall (QSH) gap of 193 meV at the Dirac cone. A single pair of topologically protected helical edge states is established for the edges, and its QSH phase is confirmed with topological invariant Z2 = 1. We also propose a 2D quantum well (QW) encapsulating HAsH with the h-BN sheet on each side, which harbors a nontrivial QSH state with the Dirac cone lying within the band gap of cladding BN substrate. These findings provide a promising innovative platform for QSH device design and fabrication operating at room temperature.
The search for new quantum spin Hall (QSH) phase and effective manipulations of their edge states are very important for both fundamental sciences and practical applications. Here, we use first-principles calculations to study the strain-driven topological phase transition of two-dimensional (2D) arsenene monolayer. We find that the band gap of arsenene decreases with increasing strain and changes from indirect to direct, and then the s-p band inversion takes place at Г point as the tensile strain is larger than 11.14%, which lead to a nontrivially topological state. A single pair of topologically protected helical edge states is established for the edge of arsenene, and their QSH states are confirmed with nontrivial topological invariant Z 2 = 1. We also propose high-dielectric BN as an ideal substrate for the experimental synthesis of arsenene, maintaining its nontrivial topology. These findings provide a promising candidate platform for topological phenomena and new quantum devices operating at nanoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.