Optogenetics is a widely used tool for studying neural circuits. However, non-invasive methods for light delivery in the brain are needed to avoid physical damage typically caused by intracranial insertion of light guides. An innovative strategy could employ X-ray activation of radioluminescent particles (RLPs) to emit localized light. We previously reported that RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, are biocompatible with neuronal function and synaptic transmission. However, little is known about the consequences of acute X-ray exposure on synaptic function and long-term plasticity. Furthermore, modulation of neuronal or synaptic function by X-ray induced radioluminescence from RLPs has not yet been demonstrated. Here we show that 30 minutes of X-ray exposure at a rate of 0.042 Gy/second caused no change in the strength of basal glutamatergic transmission during extracellular dendritic field recordings in mouse hippocampal slices. Additionally, long-term potentiation (LTP), a robust measure of synaptic integrity, was able to be induced after X-ray exposure and expressed at a magnitude not different from control conditions (absence of X-rays). This is important as synaptic plasticity is critical to learning and memory. Next, we used molecular and electrophysiological approaches to determine if X-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. We found that X-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular lightsensitive domain of channelrhodopsin-2 (ChR2) with an intracellular second messenger signaling cascade. This demonstrates that X-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether X-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing ChR2, both in cell culture and acute hippocampal slices. Importantly, Xray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both systems, indicating activation of ChR2 and excitation of neurons. Together, our results show that X-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and X-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.
Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced kinase 1 (PINK1), cause autosomal recessive familial Parkinson’s disease (PD). While PD is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-motor symptoms, including cognitive dysfunction in the early pre-motor stages of the disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is a key structure for learning and memory, this study aimed to determine whether synaptic transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an age when we recently reported a gain of function at excitatory synapses onto spiny projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5- month old PINK1 KO rats and wild-type littermate controls, we observed no detectable differences in the strength of basal synaptic transmission, paired-pulse facilitation, or long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a general dysfunction of excitatory transmission throughout the brain at this young adult age when excitatory transmission is abnormal in the striatum.
Optogenetics is a widely used tool for studying neural circuits. However, non-invasive methods for light delivery in the brain are needed to avoid physical damage typically caused by intracranial insertion of light guides. An innovative strategy could employ X-ray activation of radioluminescent particles (RLPs) to emit localized light. We previously reported that RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, are biocompatible with neuronal function and synaptic transmission. However, little is known about the consequences of acute X-ray exposure on synaptic function and long-term plasticity. Furthermore, modulation of neuronal or synaptic function by X-ray induced radioluminescence from RLPs has not yet been demonstrated. Here we show that 30 minutes of X-ray exposure at a rate of 0.042 Gy/second caused no change in the strength of basal glutamatergic transmission during extracellular dendritic field recordings in mouse hippocampal slices. Additionally, long-term potentiation (LTP), a robust measure of synaptic integrity, was able to be induced after X-ray exposure and expressed at a magnitude not different from control conditions (absence of X-rays). This is important as synaptic plasticity is critical to learning and memory. Next, we used molecular and electrophysiological approaches to determine if X-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. We found that X-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular light-sensitive domain of channelrhodopsin-2 (ChR2) with an intracellular second messenger signaling cascade. This demonstrates that X-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether X-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing ChR2, both in cell culture and acute hippocampal slices. Importantly, X-ray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both systems, indicating activation of ChR2 and excitation of neurons. Together, our results show that X-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and X-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.