The yam species, Dioscorea alata has an advantage for sustainable cultivation due to its comparatively good agronomic characteristics. Breeders are therefore keen to improve the food quality of the species. Nevertheless, published data on molecular classification and genetic diversity of this crop are scanty. This research therefore investigated genetic variability and relationships among some collected Ghanaian D. alata accessions (35) together with 14 introductions from IITA in Nigeria. The true genetic identity and population structure of the accessions were determined using 14 Simple Sequence Repeats primer pairs available for yams. Dimensional scatter diagram of the principal coordinates showed a wide dispersion among the accessions. Cluster analysis using unweighted neighbour-joining method clearly separated the 49 accessions into five main groupings. From the allele frequency analysis, the size of amplified alleles ranged from 100 to 510 bp. The mean polymorphic information content (PIC) values for all markers used was 0.91 and ranged between 0.86 and 0.94 in loci YM13 and YM30 respectively. Gene diversity was high and the average observed heterozygosity was 0.77. Gene diversity was high ranging from 0.87 in YM13 to 0.94 in YM30 with a mean of 0.92. Generally, the allele frequency of all the primers was below 0.95 indicating that they were all polymorphic in character. The findings of this study confirm that SSR molecular markers are able to identify closely related materials within species.
A vigorous root system in barley promotes water uptake from the soil under water-limited conditions. We investigated three spring barley genotypes with varying water stress responses using rhizoboxes at the seedling stage. The genotypes comprised two elite German cultivars, Barke and Scarlett, and a near-isogenic line, NIL 143. The isogenic line harbors the wild allele pyrroline-5-carboxylate synthase1-P5cs1. Root growth in rhizoboxes under reduced water availability conditions caused a significant reduction in total root length, rooting depth, root maximum width, and root length density. On average, root growth was reduced by more than 20% due to water stress. Differences in organ proline concentrations were observed for all genotypes, with shoots grown under water stress exhibiting at least a 30% higher concentration than the roots. Drought induced higher leaf and root proline concentrations in NIL 143 compared with any of the other genotypes. Under reduced water availability conditions, NIL 143 showed less severe symptoms of drought, higher lateral root length, rooting depth, maximum root width, root length density, and convex hull area compared with Barke and Scarlett. Within the same comparison, under water stress, NIL 143 had a higher proportion of lateral roots (+30%), which were also placed at deeper substrate horizons. NIL 143 had a less negative plant water potential and higher relative leaf water content and stomatal conductance compared with the other genotypes under water stress. Under these conditions, this genotype also maintained an enhanced net photosynthetic rate and exhibited considerable fine root growth (diameter class 0.05–0.35 mm). These results show that water stress induces increased shoot and root proline accumulation in the NIL 143 barley genotype at the seedling stage and that this effect is associated with increased lateral root growth.
The underwater ancient town of Chunan is of great importance in archaeology and tourism. Hence, the efficient mapping and monitoring of the topographical changes in this town are essential. An attractive choice for the efficient mapping of underwater archaeology is the multibeam echo sounder system (MBES). The MBES has several advantages including noncontact survey, high precision, and low cost. In this study, the topographical changes of the ancient town under Qiandao Lake were quantitatively assessed on the basis of time-series MBES data collected in 2002 and 2015. First, the iterative closest point (ICP) algorithm was applied to eliminate the coordinate deviations between two point sets. Second, the robust estimation method was used to analyse the characterisations of the terrain variations of the town on the basis of the differences between the two matched point sets. Obvious topographical changes ranging from −0.89 m to 0.88 m were observed in a number of local areas in the town. On the global scale, the mean absolute value of the depth change in the town was merely 0.12 m, which indicated a weak global deformation pattern. The experiment proved the effectiveness of applying MBES data to analyse the deformation of the ancient town. The results are beneficial to the study of underwater ancient towns and the development of protection strategies.
Sorghum is the third most important staple cereal crop in Uganda after maize and millet. Downy mildew disease is one of the most devastating fungal diseases which limits the production and productivity of the crop. The disease is caused by an obligate fungus, Peronosclerospora sorghi (Weston & Uppal) with varying symptoms. Information on the genetic diversity and population structure of P.sorghi in sorghum is imperative for the screening and selection for resistant genotypes and further monitoring possible mutant(s) of the pathogen. Isolates of P. sorghi infecting sorghum are difficult to discriminate when morphological descriptors are used. The use of molecular markers is efficient, and reliably precise for characterizing P. sorghi isolates. This study was undertaken to assess the level of genetic diversity and population structure that exist in P. sorghi isolates in Uganda. A total of 195 P. sorghi isolates, sampled from 13 different geographic populations from 10 different regions (agro-ecological zones) was used. Eleven (11) molecular markers, comprising of four Random amplified microsatellite (RAM) and seven (7) Inter-Simple Sequence Repeat (ISSR) markers were used in this study. The analysis of molecular variation (AMOVA) based on 11 microsatellite markers showed significant (P < 0.001) intra-population (88.9 %, PhiPT = 0.111) and inter-population (8.4 %, PhiPR = 0.083) genetic variation, while the genetic variation among regions (2.7 %, PhiRT = 0.022) was not significant. The highest genetic similarity value (0.987 = 98.7 %) was recorded between Pader and Lira populations and the lowest genetic similarity (0.913 = 91.3 %) was observed between Namutumba and Arua populations. The mean Nei's genetic diversity index (H) and Shannon Information Index (I) were 0.308 and 0.471 respectively. Seven distinct cluster groups were formed from the 195 P. sorghi isolates based on their genetic similarity. Mantel test revealed no association between genetic differentiation and geographical distance (R 2 = 0.0026, p = 0.02) within the 13 geographic populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.