Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.
Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology’s single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10–30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.
Cowpea [Vigna unguiculata (L.) Walp] is a globally important food security crop.However, it is susceptible to pest and disease; hence, constant breeding efforts based on its diversity are required for its improvement. The present study aims to investigate the genetic diversity, population structure, and linkage disequilibrium (LD) among 274 cowpea accessions from different origins. A total of 3,127 single nucleotide polymorphism (SNP) markers generated using diversity array technology (DArT) was used. Population structure, neighbor-joining clustering, and principal component analyses indicated three subpopulations within the germplasm. Results of STRUC-TURE analysis and discriminant analysis of principal components (DAPC) were complementary in assessing the structuration of the diversity among the germplasm, with the grouping of the accessions improved in DAPC. Genetic distances of 0.005-0.44 were observed among accessions. Accessions from western and central Africa, eastern and central Africa, and Asia were predominant and distributed across all subpopulations. The subpopulations had fixation indexes of 0.48-0.56. Analysis of molecular variance revealed that within subpopulation variation accounted for 81% of observed genetic variation in the germplasm. The subpopulations mainly consisted of inbred lines (inbreeding coefficient = 1) with common alleles, although they were from different geographical regions. This reflects considerable seed movement and germplasm exchange between regions. The LD was characterized by low decay for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.