Bending the curve of terrestrial biodiversity needs an integrated strategy Summary paragraph Increased efforts are required to prevent further losses of terrestrial biodiversity and the ecosystem services it provides 1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity 3-yet, just feeding the growing human population will make this a challenge 4. We use an ensemble of land-use and biodiversity models to assess whether (and if so, how) humanity can reverse terrestrial biodiversity declines due to habitat conversion, a major threat to biodiversity 5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, may allow to feed the growing human population while reversing global terrestrial biodiversity trends from habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land, and generalize landscapelevel conservation planning, biodiversity trends from habitat conversion could become positive by mid-century on average across models (confidence interval: 2042-2061), but not for all models. Food prices could increase and, on average across models, almost half (confidence interval: 34-50%) of future biodiversity losses could not be avoided. However, additionally tackling the drivers of landuse change may avoid conflict with affordable food provision and reduces the food system's environmental impacts. Through further sustainable intensification and trade, reduced food waste, and healthier human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats, such as climate change, must be addressed to truly reverse biodiversity declines, our results show that bold conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. Reversing biodiversity trends by 2050 Without further efforts to counteract habitat loss and degradation, we projected that global biodiversity will continue to decline (BASE scenario; Fig. 1). Rates of loss over time for all nine BDIs in 2010-2050 were close to or greater than those estimated for 1970-2010 (Extended data Extended Data Table 1). For various biodiversity aspects, on average across IAM and BDI combinations, peak losses over the 2010-2100 period were: 13% (range: 1-26%) for the extent of suitable habitat, 54% (range: 45-63%) for wildlife population density, 5% (range: 2-9%) for local compositional intactness , 4% (range: 1-12%) for global extinctions, and 4% (range: 2-8%) for regional extinctions (Extended Data Table 1). Percentage losses were greatest in biodiversity-rich regions (Sub-Saharan Africa, South Asia, South East Asia, the Caribbean and Latin America; Extended Data Fig. 2). The projected future trends for habitat loss and degradation and its driv...
This paper presents the first mathematical model that attempts to represent the biology and behavior of all individual organisms globally, taking us a step closer to holistic ecological and conservation science founded on mechanistic predictions.
The diversity of life on Earth—which provides vital services to humanity (1)—stems from the difference between rates of evolutionary diversification and extinction. Human activities have shifted the balance (2): Species extinction rates are an estimated 1000 times the “background” rate (3) and could increase to 10,000 times the background rate should species threatened with extinction succumb to pressures they face (4). Reversing these trends is a focus of the Convention on Biological Diversitys 2020 Strategic Plan for Biodiversity and its 20 Aichi Targets and is explicitly incorporated into the United Nations 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). We identify major gaps in data available for assessing global biodiversity threats and suggest mechanisms for closing them
A prominent signal of the Anthropocene is the extinction and population reduction of the megabiota—the largest animals and plants on the planet. However, we lack a predictive framework for the sensitivity of megabiota during times of rapid global change and how they impact the functioning of ecosystems and the biosphere. Here, we extend metabolic scaling theory and use global simulation models to demonstrate that (i) megabiota are more prone to extinction due to human land use, hunting, and climate change; (ii) loss of megabiota has a negative impact on ecosystem metabolism and functioning; and (iii) their reduction has and will continue to significantly decrease biosphere functioning. Global simulations show that continued loss of large animals alone could lead to a 44%, 18% and 92% reduction in terrestrial heterotrophic biomass, metabolism, and fertility respectively. Our findings suggest that policies that emphasize the promotion of large trees and animals will have disproportionate impact on biodiversity, ecosystem processes, and climate mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.