This fMRI study investigated the human somatosensory system, especially the secondary somatosensory cortex (SII), with respect to its potential somatotopic organization. Eight subjects received electrical stimulation on their right second finger, fifth finger and hallux. Within SII, the typical finding for both fingers was a representation site within the contralateral parietal operculum roughly halfway between the lip of the lateral sulcus and its fundus, whereas the representation site of the hallux was found more medially to this position at the fundus of the lateral sulcus, near the posterior pole of the insula. Somatotopy in SII seems to be less fine-grained than in primary somatosensory cortex (SI), as, in contrast to SI, no separate representations of the two fingers in SII were observed. A similar somatotopic representation pattern between fingers and the hallux was also observed within ipsilateral SII, indicating somatotopy of contra- as well as ipsilateral SII using unilateral stimulation. Further areas exhibiting activation were found in the superior and inferior parietal lobule, in the supplementary and cingulate motor area, and in the insula.
Epidemiological evidence points to prenatal viral infection being responsible for some forms of schizophrenia and autism. We hypothesized that prenatal human influenza viral infection in day 9 pregnant mice may cause changes in the levels of neuronal nitric oxide synthase (nNOS), an important molecule involved in synaptogenesis and excitotoxicity, in neonatal brains. Brains from 35- and 56-day-old mice were prepared for SDS-gel electrophoresis and Western blotting using polyclonal anti nNOS antibody. Quantification of nNOS showed time and region-dependent changes in the levels of nNOS protein. Mean rostral brain area value from prenatally infected animals showed a significant (p=0.067) increase of 147% in nNOS levels at 35 days postnatally, with an eventual 29% decrease on day 56. Middle and caudal brain areas showed reductions in nNOS in experimental mice at 35 and 56 days, with a significant 27% decrease in nNOS in the middle segment of day 56 brains (p=0.016). Significant interactions were found between group membership and brain area (Wilks lambda=0.440, F(2.9)=5.72, p=0.025); there was also a significant interaction between brain area, group and age (Wilks lambda=0.437, F(2.9)=5.79, p=0.024). These results provide further support for the notion that prenatal viral infection affects brain development adversely via the pathological involvement of nNOS expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.