This fMRI study investigated the human somatosensory system, especially the secondary somatosensory cortex (SII), with respect to its potential somatotopic organization. Eight subjects received electrical stimulation on their right second finger, fifth finger and hallux. Within SII, the typical finding for both fingers was a representation site within the contralateral parietal operculum roughly halfway between the lip of the lateral sulcus and its fundus, whereas the representation site of the hallux was found more medially to this position at the fundus of the lateral sulcus, near the posterior pole of the insula. Somatotopy in SII seems to be less fine-grained than in primary somatosensory cortex (SI), as, in contrast to SI, no separate representations of the two fingers in SII were observed. A similar somatotopic representation pattern between fingers and the hallux was also observed within ipsilateral SII, indicating somatotopy of contra- as well as ipsilateral SII using unilateral stimulation. Further areas exhibiting activation were found in the superior and inferior parietal lobule, in the supplementary and cingulate motor area, and in the insula.
BackgroundThe SRY-related HMG-box family of transcription factors member SOX2 has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients.MethodsSamples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Women's Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for SOX2, NANOG and OCT4 gene expression by real-time PCR.ResultsSOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score 0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432).ConclusionsIn this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early stage postmenopausal breast carcinomas and metastatic lymph nodes. Our data suggest that SOX2 plays an early role in breast carcinogenesis and high expression may promote metastatic potential. Further studies are needed to explore whether SOX2 can predict metastatic potential at an early tumor stage.
Movement-related slow cortical potentials and event-related desynchronization of alpha (alpha-ERD) and beta (beta-ERD) activity after self-paced voluntary triangular finger movements were studied in 13 ischaemic supratentorial stroke patients and 10 age-matched control subjects during movement preparation and actual performance. The stroke patients suffered from central arm paresis (n = 8), somatosensory deficits (n = 3) or ideomotor apraxia (n = 2). The multimodal EEG analysis suggested impairment-specific changes in the movement-related electrical activity of the brain. The readiness potential of paretic subjects was centred more anteriorly and laterally; during movement, they showed increased beta-ERD at left lateral frontal recording sites. Patients with somatosensory deficits showed reduced alpha-ERD and beta-ERD during both movement preparation and actual performance. Patients with ideomotor apraxia showed more lateralized frontal movement-related slow cortical potentials during both movement preparation and performance, and reduced left parietal beta-ERD during movement preparation. We conclude that (i) disturbed motor efference is associated with an increased need for excitatory drive of pyramidal cells in motor and premotor areas or an attempt to drive movements through projections from these areas to brainstem motor systems during movement preparation; (ii) an undisturbed somatosensory afference might contribute to the release of relevant cortical areas from their 'idling' state when movements are prepared and performed; and (iii) apraxic patients have a relative lack of activity of the mesial frontal motor system and the left parietal cortex, which is believed to be part of a network subserving ideomotor praxis.
Epidemiological evidence points to prenatal viral infection being responsible for some forms of schizophrenia and autism. We hypothesized that prenatal human influenza viral infection in day 9 pregnant mice may cause changes in the levels of neuronal nitric oxide synthase (nNOS), an important molecule involved in synaptogenesis and excitotoxicity, in neonatal brains. Brains from 35- and 56-day-old mice were prepared for SDS-gel electrophoresis and Western blotting using polyclonal anti nNOS antibody. Quantification of nNOS showed time and region-dependent changes in the levels of nNOS protein. Mean rostral brain area value from prenatally infected animals showed a significant (p=0.067) increase of 147% in nNOS levels at 35 days postnatally, with an eventual 29% decrease on day 56. Middle and caudal brain areas showed reductions in nNOS in experimental mice at 35 and 56 days, with a significant 27% decrease in nNOS in the middle segment of day 56 brains (p=0.016). Significant interactions were found between group membership and brain area (Wilks lambda=0.440, F(2.9)=5.72, p=0.025); there was also a significant interaction between brain area, group and age (Wilks lambda=0.437, F(2.9)=5.79, p=0.024). These results provide further support for the notion that prenatal viral infection affects brain development adversely via the pathological involvement of nNOS expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.