Many EDA tasks such as test set characterization or the precise estimation of power consumption, power droop and temperature development, require a very large number of time-aware gate-level logic simulations. Until now, such characterizations have been feasible only for rather small designs or with reduced precision due to the high computational demands.The new simulation system presented here is able to accelerate such tasks by more than two orders of magnitude and provides for the first time fast and comprehensive timing simulations for industrialsized designs. Hazards, pulse-filtering, and pin-to-pin delay are supported for the first time in a GPGPU accelerated simulator, and the system can easily be extended to even more realistic delay models and further applications.A sophisticated mapping with efficient memory utilization and access patterns as well as minimal synchronizations and control flow divergence is able to use the full potential of GPGPU architectures. To provide such a mapping, we combine for the first time the versatility of event-based timing simulation and multidimensional parallelism used in GPU-based gate-level simulators. The result is a throughput-optimized timing simulation algorithm, which runs many simulation instances in parallel and at the same time fully exploits gate-parallelism within the circuit.
Although CMOS technology scaling offers many advantages, it suffers from robustness problem caused by hard, soft and timing errors. The robustness of future CMOS technology nodes must be improved and the use of fault tolerant architectures is probably the most viable solution. In this context, Duplication/Comparison scheme is widely used for error detection. Traditionally, this scheme uses a static comparator structure that detects hard error. However, it is not effective for soft and timing errors detection due to the possible masking of glitches by the comparator itself. To solve this problem, we propose a pseudo-dynamic comparator architecture that combines a dynamic CMOS transition detector and a static comparator. Experimental results show that the proposed comparator detects not only hard errors but also small glitches related to soft and timing errors. Moreover, its dynamic characteristics allow reducing the power consumption while keeping an equivalent silicon area compared to a static comparator. This study is the first step towards a full fault tolerant approach targeting robustness improvement of CMOS logic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.