The preparation of materials with aligned porosity in the micrometre range is of technological importance for a wide range of applications in organic electronics, microfluidics, molecular filtration and biomaterials. Here, we demonstrate a generic method for the preparation of aligned materials using polymers, nanoparticles or mixtures of these components as building blocks. Directional freezing is used to align the structural elements, either in the form of three-dimensional porous structures or as two-dimensional oriented surface patterns. This simple technique can be used to generate a diverse array of complex structures such as polymer-inorganic nanocomposites, aligned gold microwires and microwire networks, porous composite microfibres and biaxially aligned composite networks. The process does not involve any chemical reaction, thus avoiding potential complications associated with by-products or purification procedures.
We demonstrate a generic new approach to produce homogeneous and reproducible hydrogels from low molecular weight hydrogelators using the controlled hydrolysis of glucono-d-lactone (GdL). GdL slowly hydrolyses in water to give gluconic acid, which controllably lowers the pH. This hydrolysis is slower than the rate of dissolution; hence uniform pH change throughout the sample is possible. This results in homogeneous hydrogels that are unaffected by their shear or mixing history. A further advantage of this method is that it allows the gelation process to be monitored, giving further insight into the mechanism by which gelation occurs.
The reaction mechanism of chitosan, bovine serum albumin (BSA), and gelatin with genipin (a natural crosslinking reagent) was examined with infrared, ultraviolet-visible, and 13 C NMR spectroscopies; protein-transfer reaction mass spectrometry; photon correlation spectroscopy; and dynamic oscillatory rheometry. Two reactions that proceeded at different rates led to the formation of crosslinks between primary amine groups. The fastest reaction to occur was a nucleophilic attack on genipin by a primary amine group that led to the formation of a heterocyclic compound of genipin linked to the glucosamine residue in chitosan and the basic residues in BSA and gelatin. The second, slower, reaction was the nucleophilic substitution of the ester group possessed by genipin to form a secondary amide link with chitosan, BSA, or gelatin. A decreased crosslinking rate in the presence of deuterium oxide rather than water suggested that acid catalysis was necessary for one or both of the reactions to proceed. The behavior of the gel time with polymer concentration was consistent with second-order gelation kinetics resulting from an irreversible crosslinking process, but was complicated by the oxygen radical-induced polymerization of genipin that caused the gels to assume a blue color in the presence of air. The lower elastic modulus attained after a given time during crosslinking of the globular protein BSA as compared to the coiled protein gelatin, despite possessing more crosslinkable basic residues, demonstrated the importance of protein secondary and tertiary structures in determining the availability of sites for crosslinking with genipin in protein systems.
Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.