The year 2015 marks the 50th anniversary since the discovery of the anticancer potential of cisplatin and it remains just as useful now as it did back then, especially for the treatment of some endocrine-related cancers like ovarian and testicular carcinomas. Since its discovery, five other platin drugs have received approval in various countries. While several new platin drugs are in preclinical development, in the last decade only two new platin drugs have entered clinical trials, LA-12 and dicycloplatin, reflecting a shift in research focus from new drug design to improved formulations of already approved platin drugs. These formulations include their encapsulation with macrocycles to slow and prevent their degradation by proteins and peptides; their attachment to nanoparticles to passively target solid tumours through the enhanced permeability and retention effect and their coordination to important nutrients, proteins, antibodies and aptamers for active tumour targeting. These formulation methods have all shown potential but none have yet yielded a new marketable medicine containing a platin drug. The reasons for this are problems of consistent drug loading, controlling the location and timing of drug release and the inherent toxicity of some of the drug delivery vehicles. In addition to drug delivery, functional genomics is now playing an increasing role in predicting patients' responses to platin chemotherapy and their likelihood of experiencing severe side effects.
The macrocycle family of molecules called cucurbit[n]urils are potential drug delivery vehicles as they are able to form host-guest complexes with many different classes of drugs. This study aimed to examine the utility of Cucurbit[6]uril (CB[6]) in topical cream-based formulations for either localised treatment or for transdermal delivery. Cucurbit[6]uril was formulated into both buffered cream aqueous- and oily cream-based dosage forms. The solid state interaction of CB[6] with other excipients was studied by differential scanning calorimetry and the macrocycle's transdermal permeability was determined using rat skin. Significant solid state interactions were observed between CB[6] and the other dosage form excipients. At concentrations up to 32% w/w the buffered aqueous cream maintained its normal consistency and could be effectively applied to skin, but the oily cream was too stiff and is not suitable as a dosage form. Cucurbit[6]uril does not permeate through skin; as such, the results imply that cucurbituril-based topical creams may potentially only have applications for localised skin treatment and not for transdermal drug delivery.
A laboratory experiment to determine the concentration of the anti-inflammatory drug ibuprofen in liquid gelatin capsule dosage forms, suitable for undergraduate chemistry or pharmacy students, is described. Either individually, or in small teams, the students digest two 200 mg capsules in a KOH solution. While the capsules are digesting the students prepare a range of ibuprofen standards and determine their UV absorbance at 264 nm. Next, the students use the data to both determine the drug's extinction coefficient using the Beer−Lambert equation and to plot a calibration graph. Using both the extinction coefficient and the calibration graph the students are then required to determine the amount of ibuprofen in each of their capsules. In undertaking the laboratory class, the students are required to complete a results data sheet, determine whether the capsules are within specification, and answer questions that prompt them to evaluate the different calculation methods and the accuracy of the tests. In their final exam, the students were asked three multiple choice questions and one multistep calculation question related to the laboratory class. The results of the students' final exam show that the learning objectives of the laboratory were broadly met, with students being able to demonstrate an understanding behind the science of the laboratory, and an ability to undertake simple, as well as complex, calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.