[1] Large sets of filtered actinometer, filtered pyrheliometer and Sun photometer measurements have been carried out over the past 30 years by various groups at different Arctic and Antarctic sites and for different time periods. They were examined to estimate ensemble average, long-term trends of the summer background aerosol optical depth AOD(500 nm) in the polar regions (omitting the data influenced by Arctic haze and volcanic eruptions). The trend for the Arctic was estimated to be between À1.6% and À2.0% per year over 30 years, depending on location. No significant trend was observed for Antarctica. The time patterns of AOD(500 nm) and Å ngström's parameters a and b measured with Sun photometers during the last 20 years at various Arctic and Antarctic sites are also presented. They give a measure of the large variations of these parameters due to El Chichon, Pinatubo, and Cerro Hudson volcanic particles, Arctic haze episodes most frequent in winter and spring, and the transport of Asian dust and boreal smokes to the Arctic region. Evidence is also shown of marked differences between the aerosol optical parameters measured at coastal and high-altitude sites in Antarctica. In situ optical and chemical composition parameters of aerosol particles measured at Arctic and Antarctic sites are also examined to achieve more complete information on the multimodal size distribution shape parameters and their radiative properties. A characterization of aerosol radiative parameters is also defined by plotting the daily mean values of a as a function of AOD(500 nm), separately for the two polar regions, allowing the identification of different clusters related to fifteen aerosol classes, for which the spectral values of complex refractive index and single scattering albedo were evaluated. Citation: Tomasi, C., et al. (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations,
The eruption of the Icelandic volcano Eyjafjallajökull in April- May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org.During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area.The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events
We recorded photoelectron spectra of antimony Sb−N=2–9 and of bismuth clusters Bi−N=2–9 with a photon energy of 4.03 eV, as well as of Bi−N=2–21 with a photon energy of 5.0 eV. The experimentally determined photoelectron thresholds and peak positions of Sb−N=2–5 and Bi−N=2–5 are compared with the results of ab initio density-functional (LCAO) calculations. The agreement between the experimental thresholds and the calculated adiabatic electron affinities, as well as between the first maxima in the spectra and the calculated vertical detachment energies is fair to good for the antimony clusters and qualitative for the bismuth systems. For the calculation of the ionization (detachment) energies we determined for the neutral and anionic clusters the most stable structures by LCAO calculations. In particular, the tetramer cluster anions have a ‘‘roof’’ structure, while the negatively charged pentamers are planar rings [with similarities to the (C5H5)− anion]; positive and negative trimers are nonlinear. Furthermore, the ionization energies and affinities of larger antimony and bismuth clusters are discussed qualitatively and compared to jellium calculations of Seidl and Brack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.