The initiation and detonation properties of explosives are often empirically correlated to density, surface area, and particle size. Although these correlations are sometimes used successfully to predict the performance of bulk samples, the data are spatially averaged, which unfortunately muddles information critical to understanding fundamental processes. Density and surface area are essentially an indirect measure of porosity, which is arguably a more appropriate metric in many applications. We report the direct characterization of porosity in polycrystalline molecular crystal explosives by focused ion beam nanotomography, a technique that is typically reserved for robust materials such as ceramics and metals. The resulting three-dimensional microstructural data are incredibly rich, promising a substantial advance in our ability to unravel the processes governing initiation and detonation of molecular crystal explosives. In a larger context, this work demonstrates that focused ion beam nanotomography may be successfully extended to the investigation of nanoscale porosity in other molecular crystal or polymer materials.
Failure analysis (FA) tools have been applied to analyze tungsten coated polysilicon microengines. These devices were stressed under accelerated conditions at ambient temperatures and pressure. Preliminary results illustrating the failure modes of microengines operated under variable humidity and ultra-high drive frequency will also be shown.Analysis of tungsten coated microengines revealed the absence of wear debris in microengines operated under ambient conditions. Plan view imaging of these microengines using scanning electron microscopy (SEM) revealed no accumulation of wear debris on the surface of the gears or ground plane on microengines operated under standard laboratory conditions. Friction bearing surfaces were exposed and analyzed using the focused ion beam (FIB). These cross sections revealed no accumulation of debris along friction bearing surfaces. By using transmission electron microscopy (TEM) in conjunction with electron energy loss spectroscopy (EELS), we were able to identify the thickness, elemental analysis, and crystallographic properties of tungsten coated MEMS devices. Atomic force microscopy was also utilized to analyze the surface roughness of filction bearing surfaces
We present simulation and experimental results proving the feasibility of a novel concept to increase efficiency of CdTe based solar cells. In order to achieve $0.50/W price in CdTe based modules, higher efficiencies need to be attained. The high defect density due to lattice-mismatch between CdS and CdTe reduces lifetime, voltage, and efficiency of the cells. We propose the use of a graded composition structure and a patterned substrate to reduce defects, increase lifetime, and efficiency of the cells. Innovative simulations using high-fidelity molecular dynamics predict that defect-free films are possible if the CdTe film is graded with Zn and is constructed as nano-islands with sizes below 90 nm. Both graded structure and nano-islands reduce the lattice-mismatch stresses. Also, the graded composition creates a back surface field and an enhanced ohmic contact. We have attempted to grow ZnTe and CdTe films on CdS substrates using a template of micro and nano-islands. Selective growths on patterned substrates have shown fewer grain boundaries when the island size decreases below 300 nm. Also, larger grain sizes were obtained using a CdTe/ZnTe stack when compared to a single layer CdTe. The simulation and experimental results demonstrate for the first time the ability to use nanopatterned substrates to enhance uniformity in thin film solar cells.
Backside circuit edit (CE) remains a crucial failure analysis (FA) capability, enabling design modifications on advanced integrated circuits. [1-9] A key requirement of this activity is to approach the active transistor layer of the silicon through the removal of the silicon substrate without exposing or damaging critical transistor features. Several methods have been previously developed to enable or assist with the process with either global or locally targeted techniques for thinning the silicon substrate. These methods employ mechanical methods, laser based techniques (continuous or pulsed), or chemical assisted focused ion beam (FIB) etching to accomplish the thinning. Each of these methods presents different strengths and weaknesses, from their reliability to complexity, but very few techniques provide a precise and accurate quantitative measure of the remaining silicon thickness (RST). Here, we will discuss the use of a FIB with XeF2 for backside Si removal, and the development of an in-situ, accurate measurement of RST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.