Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.
Polychromatic laser light can reduce speckle noise in wavefront-sensing and imaging applications that use direct-detection schemes. To help quantify the achievable reduction in speckle, this paper investigates the accuracy and numerical efficiency of three separate wave-optics methods. Each method simulates the active illumination of extended objects with polychromatic laser light. In turn, this paper uses the Monte Carlo method, the depth-slicing method, and the spectral-slicing method, respectively, to simulate the laser-object interaction. The limitations and sampling requirements of all three methods are discussed. Further, the numerical efficiencies of the methods are compared over a range of conditions. The Monte Carlo method is found to be the most efficient, while spectral slicing is more efficient than depth slicing for well-resolved objects. Finally, Hu's theory is used to quantify method accuracy when possible (i.e., for well-resolved objects). In general, the theory compares favorably to the simulation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.