At least 250 million people worldwide are chronically infected with HBV, a small hepatotropic DNA virus that replicates through reverse transcription. Chronic infection greatly increases the risk for terminal liver disease. Current therapies rarely achieve a cure due to the refractory nature of an intracellular viral replication intermediate termed covalently closed circular (ccc) DNA. Upon infection, cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (RC) DNA genome in incoming virions. Its fundamental role is that as template for all viral RNAs, and in consequence new virions. Biosynthesis of RC-DNA by reverse transcription of the viral pregenomic RNA is now understood in considerable detail, yet conversion of RC-DNA to cccDNA is still obscure, foremostly due to the lack of feasible, cccDNA-dependent assay systems. Conceptual and recent experimental data link cccDNA formation to cellular DNA repair, which is increasingly appreciated as a critical interface between cells and viruses. Together with new in vitro HBV infection systems, based on the identification of the bile acid transporter sodium taurocholate cotransporting polypeptide as an HBV entry receptor, this offers novel opportunities to decipher, and eventually interfere with, formation of the HBV persistence reservoir. After a brief overview of the role of cccDNA in the HBV infectious cycle, this review aims to summarise current knowledge on cccDNA molecular biology, to highlight the experimental restrictions that have hitherto hampered faster progress and to discuss cccDNA as target for new, potentially curative therapies of chronic hepatitis B.
Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA, ε, as template, and depends on cellular chaperones; moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids. This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV), now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cellfree systems. At this time, they can, unfortunately, not be complemented by three-dimensional structural information on the involved components. However, at least for the ε RNA element such information is emerging, raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal, will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development.© 2007 The WJG Press. All rights reserved. Dieter Glebe, PhD, Series EditorPO Box 2345, Beijing 100023, China World J Gastroenterol 2007 January 7; 13(1): 48-64 www.wjgnet.com World Journal of Gastroenterology ISSN 1007-9327 wjg@wjgnet.com © 2007 OVERVIEW OVER THE HEPADNAVIRAL GENOME REPLICATION CYCLEReplication of the hepadnaviral genome can broadly be divided into three phases ( Figure 1): (1) Infectious virions contain in their inner icosahedral core the genome as a partially double-stranded, circular but not covalently closed DNA of about 3.2 kb in length (relaxed circular, or RC-DNA); (2) upon infection, the RC-DNA is converted, inside the host cell nucleus, into a plasmid-like covalently closed circular DNA (cccDNA); (3) from the cccDNA, several genomic and subgenomic RNAs are transcribed by cellular RNA polymerase Ⅱ; of these, the pregenomic RNA (pgRNA) is selectively packaged into progeny capsids and is reverse transcribed by the co-packaged P protein into new RC-DNA genomes. Matured RC-DNA containing-but not immature RNA containingnucleocapsids can be used for intracellular cccDNA amplification, or be enveloped and released from the cell as progeny virions. Below we discuss these genome conversions, with emphasis on the reverse transcription step, and particularly its unique initiation mechanism. RC-DNA TO cccDNA CONVERSIONPersistent viral infections require tha...
A critical feature of a viral life cycle is the ability to selectively package the viral genome. In vivo, phosphorylated hepatitis B virus (HBV) core protein specifically encapsidates a complex of pregenomic RNA (pgRNA) and viral polymerase; it has been suggested that packaging is specific for the complex. Here, we test the hypothesis that core protein has intrinsic specificity for pgRNA, independent of the polymerase. For these studies, we also evaluated the effect of core protein phosphorylation on assembly and RNA binding, using phosphorylated core protein and a phosphorylation mimic in which S155, S162, and S170 were mutated to glutamic acid. We have developed an in vitro system where capsids are disassembled and assembly-active core protein dimer is purified. With this protein, we have reassembled empty capsids and RNA-filled capsids. We found that core protein dimer bound and encapsidated both the HBV pregenomic RNA and heterologous RNA with high levels of cooperativity, irrespective of phosphorylation. In direct competition assays, no specificity for pregenomic RNA was observed. This suggests that another factor, such as the viral polymerase, is required for specific packaging. These results also beg the question of what prevents HBV core protein from assembling on nonviral RNA, preserving the protein for virus production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.