Here, we show that a nitric oxide synthase (NOS) pseudogene is expressed in the CNS of the snail Lymnaea stagnalis. The pseudo-NOS transcript includes a region of significant antisense homology to a previously reported neuronal NOS (nNOS)-encoding mRNA. This suggested that the pseudo-NOS transcript acts as a natural antisense regulator of nNOS protein synthesis. In support of this, we show that both the nNOS-encoding and the pseudo-NOS transcripts are coexpressed in giant identified neurons (the cerebral giant cells) in the cerebral ganglion. Moreover, reverse transcription-PCR experiments on RNA isolated from the CNS establish that stable RNA-RNA duplex molecules do form between the two transcripts in vivo. Using an in vitro translation assay, we further demonstrate that the antisense region of the pseudogene transcript prevents the translation of nNOS protein from the nNOS-encoding mRNA. By analyzing NOS RNA and nNOS protein expression in two different identified neurons, we find that when both the nNOS-encoding and the pseudo-NOS transcripts are present in the same neuron, nNOS enzyme activity is substantially suppressed. Importantly, these results show that a natural antisense mechanism can mediate the translational control of nNOS expression in the Lymnaea CNS. Our findings also suggest that transcribed pseudogenes are not entirely without purpose and are a potential source of a new class of regulatory gene in the nervous system.
We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
The nitric oxide (NO)-cGMP signaling pathway is implicated in an increasing number of experimental models of plasticity. Here, in a behavioral analysis using one-trial appetitive associative conditioning, we show that there is an obligatory requirement for this pathway in the formation of long-term memory (LTM). Moreover, we demonstrate that this requirement lasts for a critical period of approximately 5 hr after training. Specifically, we trained intact specimens of the snail Lymnaea stagnalis in a single conditioning trial using a conditioned stimulus, amyl-acetate, paired with a salient unconditioned stimulus, sucrose, for feeding. Long-term associative memory induced by a single associative trial was demonstrated at 24 hr and shown to last at least 14 d after training. Tests for LTM and its dependence on NO were performed routinely 24 hr after training. The critical period when NO was needed for memory formation was established by transiently depleting it from the animals at a series of time points after training by the injection of the NO-scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide (PTIO). By blocking the activity of NO synthase and soluble guanylyl cyclase enzymes after training, we provided further evidence that LTM formation depends on an intact NO-cGMP pathway. An electrophysiological correlate of LTM was also blocked by PTIO, showing that the dependence of LTM on NO is amenable to analysis at the cellular level in vitro. This represents the first demonstration that associative memory formation after single-trial appetitive classical conditioning is dependent on an intact NO-cGMP signaling pathway.
A role for the NO-cGMP pathway in mediating chemosensory activation of feeding is suggested by intense NADPH diaphorase staining observed in nerve fibers that project from sensory cells in the lips to the CNS and by the presence in the CNS of a NO-activated guanylyl cyclase. In preparations reduced to isolated lips and CNS, intracellular recordings were made from motoneurons driven by the interneurons of the central pattern generator (CPG) for feeding. Fictive feeding in such preparations can be recorded from these motoneurons following the application of sucrose to the lips. Sucrose activation of fictive feeding is inhibited by the NO scavenger hemoglobin, the NO synthase inhibitor N omega-Nitro-L-Arginine Methyl Ester (L-NAME) and by methylene blue, an inhibitor of guanylyl cyclase. Fictive feeding in isolated lip-CNS preparations can be activated without sucrose by superfusion of NO donor molecules such as SNAP and hydroxylamine and by the nonhydrolyzable analog of cGMP, 8-bromo-cGMP. The feeding CPG can also be activated centrally by depolarizing a modulatory interneuron, the slow oscillator (SO). When the CPG is activated in this way, fictive feeding is not susceptible to inhibition by hemoglobin, the most potent of the inhibitors of sucrose-activated fictive feeding. Behavioral experiments on intact snails confirm the findings from in vitro experiments and show that hemoglobin prevents feeding and methylene blue significantly delays the onset of feeding. These results indicate (1) that NO is a putative chemosensory transmitter in the snail L. stagnalis, (2) that the NO-cGMP pathway can mediate chemosensory activation of specific patterns of centrally generated behavior, (3) that NO is not involved in transmission within the central network of neurons responsible for the behavior, and more generally (4) that a freely diffusing and highly reactive gaseous signalling molecule can have restricted and specific behavioral functions.
The neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH) is present in the nerve terminals of an identified slow skeletal motoneuron in the cockroach. Proctolin is released onto the target muscle, a coxal depressor, by neuron stimulation and by depolarization with potassium. The physiological action of the motoneuron suggests that proctolin acts as a cotransmitter. Proctolin and neural stimulation produce delayed and sustained contractile effects without muscle depolarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.