Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in EconStor may
AbstractWe analyze income tax evasion dynamics in a standard model of statistical mechanics, the Ising model of ferromagnetism. However, in contrast to previous research, we use an inhomogeneous multi-dimensional Ising model where the local degrees of freedom (agents) are subject to a specific social temperature and coupled to external fields which govern their social behavior. This new modeling frame allows for analyzing large societies of four different and interacting agent types. As a second novelty, our model may reproduce results from agent-based models that incorporate standard Allingham and Sandmo tax evasion features as well as results from existing two-dimensional Ising based tax evasion models. We then use our model for analyzing income tax evasion dynamics under different enforcement scenarios and point to some policy implications.
a b s t r a c tWe investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.
Abstract. The objective of this paper is to improve estimations of the size and scope of the underground economy by introducing a new approach that combines the advantages of the two most commonly used approaches, i.e., currency demand and MIMIC. The new approach is applied to Germany. Among other things, it is shown that the approach yields improved estimation results. Some policy perspectives are discussed in the concluding section.
This article provides experimental evidence regarding the influence of positive rewards on income tax evasion behavior. In particular, the authors experimentally test the impact of positive rewards in the form of individual lottery winnings for fully compliant taxpayers. Among other things, the authors find that these positive rewards lead to a higher rate of tax compliance. Moreover, there are two gender effects. Males not only evade taxes to a much higher extent than females they also show a stronger positive response to the lottery scheme. This allows us to draw some interesting policy recommendations on the efficient use of rewards as a complement of deterrence policies for fighting tax evasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.