The electrochemical reduction of carbon dioxide is usually studied in aqueous solutions under ambient conditions. However, the main disadvantages of this method are high hydrogen evolution and low faradaic efficiencies of carbon-based products. Supercritical CO (scCO ) can be used as a solvent itself to suppresses hydrogen evolution and tune the carbon-based product yield; however, it has received little attention for this purpose. Therefore, the focus of this study was on the electrochemical reduction of scCO . The conductivity of scCO was increased through the addition of supporting electrolyte and a cosolvent (acetonitrile). Furthermore, the addition of protic solutions of different pH to scCO was investigated. 1 m H SO , trifluoroethanol, H O, KOH, and CsHCO solutions were used to determine the effect on current density, faradaic efficiency, and selectivity of the scCO reduction. The reduction of scCO to methanol and ethanol are reported for the first time. However, methane and ethylene were not observed. Additionally, corrosion of the Cu electrode was noticed.
The electrocatalytic reduction of carbon dioxide (CO2) by means of renewable energies is widely recognized as a promising approach to establish a sustainable closed carbon cycle economy. However, widespread application is hampered by the inherent difficulty in suppressing the hydrogen evolution reaction and controlling the overall process selectivity. Further critical parameters are the limited solubility of CO2 in many electrolytes and its hindered mass transport to the electrodes. Herein we report on a series of nanoparticle Cu electrocatalysts on different carbon supports and their potential to perform the electrochemical CO2 reduction under supercritical conditions (scCO2). Herein, CO2 serves as the reaction medium and reactant alike. By a detailed comparison to ambient conditions we show that scCO2 conditions largely suppress the undesirable hydrogen evolution and favor the production of formic acid by the Cu electrodes. Furthermore, we show that scCO2 conditions significantly prevent Cu nanoparticle agglomeration during electrocatalysis.
Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.
The wastewater pollution of tanneries is of high concern. The investigation of technologies to minimize the consumption of chemicals in the leather production process can reduce the environmental burden. We focus on the reduction of ammonium salts in the leather production process. Salt-free deliming of animal hides with compressed carbon dioxide as deliming agent is performed for the first time in a technical scale 20-L drum. As a result, CO 2-deliming at 30 bar and 30°C is two times faster than conventional deliming. In addition, the deliming efficiency is slightly improved. The initial calcium (Ca) content of the hides of 8 g/kg reaches the lowest value of 2 g/kg after a process time of 3 h. However, a process time of 60 min is sufficient to reach an elimination of 50 wt% of the initial lime. The resulting Ca-content of 4 g/kg after 60 min CO 2-deliming at 30 bar is comparable with the Ca-content of conventional delimed hide. We clarify that the ampholytic character of the collagen itself enables a buffering of the pH-value at pH-7. The stable pH-value supports the selection of specific bating enzymes that decompose noncollagen proteins. No buffering salts contaminate the wastewater. The high-pressure CO 2-deliming process has high potential to reduce wastewater emissions, save costs for chemicals, and process time in industrial beamhouse applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.