Phylogenetic analysis of 16S ribosomal DNA (rDNA) clones obtained by PCR from uncultured bacteria inhabiting a wide range of environments has increased our knowledge of bacterial diversity. One possible problem in the assessment of bacterial diversity based on sequence information is that PCR is exquisitely sensitive to contaminating 16S rDNA. This raises the possibility that some putative environmental rRNA sequences in fact correspond to contaminant sequences. To document potential contaminants, we cloned and sequenced PCR-amplified 16S rDNA fragments obtained at low levels in the absence of added template DNA. 16S rDNA sequences closely related to the genera Duganella(formerly Zoogloea), Acinetobacter,Stenotrophomonas, Escherichia,Leptothrix, and Herbaspirillum were identified in contaminant libraries and in clone libraries from diverse, generally low-biomass habitats. The rRNA sequences detected possibly are common contaminants in reagents used to prepare genomic DNA. Consequently, their detection in processed environmental samples may not reflect environmentally relevant organisms.
rRNA-based molecular phylogenetic techniques were used to identify the bacterial species present in the ear fluid from a female patient with otitis externa. We report the identification ofStaphylococcus intermedius from the patient and a possible route of transmission. Analysis of 16S ribosomal DNA restriction fragment length polymorphisms indicated that the dominant species present was S. intermedius. A pet dog owned by the patient also was tested and found to harbor S. intermedius. In humans, the disease is rare and considered a zoonosis. Previously,S. intermedius has been associated with dog bite wounds, catheter-related injuries, and surgery. This study represents the first reported case of a noninvasive infection with S. intermedius.
The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the generaCorynebacterium, Staphylococcus,Peptostreptococcus, Streptococcus, andEscherichia. Unexpectedly, a wide diversity ofCorynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid.
Self-splicing group I introns, like other large catalytic RNAs, contain structural domains. Although the crystal structure of one of these domains has been determined by x-ray analysis, its connection to the other major domain that contains the guanosine-binding site has not been known. Site-directed mutagenesis and kinetic analysis of RNA splicing were used to identify a base triple in the conserved core of both a cyanobacterial (Anabaena) and a eukaryotic (Tetrahymena) group I intron. This long-range interaction connects a sequence adjacent to the guanosine-binding site with the domain implicated in coordinating the 5' splice site helix, and it thereby contributes to formation of the active site. The resulting five-strand junction, in which a short helix forms base triples with three separate strands in the Tetrahymena intron, reveals exceptionally dense packing of RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.