Objectives To measure the impact on the dengue vector population (Aedes aegypti) and disease transmission of window curtains and water container covers treated with insecticide. Design Cluster randomised controlled trial based on entomological surveys and, for Trujillo only, serological survey. In addition, each site had a non-randomised external control. Setting 18 urban sectors in Veracruz (Mexico) and 18 in Trujillo (Venezuela). Participants 4743 inhabitants (1095 houses) in Veracruz and 5306 inhabitants (1122 houses) in Trujillo. Intervention Sectors were paired according to entomological indices, and one sector in each pair was randomly allocated to receive treatment. In Veracruz, the intervention comprised curtains treated with lambdacyhalothrin and water treatment with pyriproxyfen chips (an insect growth regulator). In Trujillo, the intervention comprised curtains treated with longlasting deltamethrin (PermaNet) plus water jar covers of the same material. Follow-up surveys were conducted at intervals, with the final survey after 12 months in Veracruz and nine months in Trujillo. Main outcome measures Reduction in entomological indices, specifically the Breteau and house indices. Results In both study sites, indices at the end of the trial were significantly lower than those at baseline, though with no significant differences between control and intervention arms. The mean Breteau index dropped from 60% (intervention clusters) and 113% (control) to 7% (intervention) and 12% (control) in Veracruz and from 38% to 11% (intervention) and from 34% to 17% (control) in Trujillo. The pupae per person and container indices showed similar patterns. In contrast, in nearby communities not in the trial the entomological indices followed the rainfall pattern. The intervention reduced mosquito populations in neighbouring control clusters (spill-over effect); and houses closer to treated houses were less likely to have infestations than those further away. This created a community effect whereby mosquito numbers were reduced throughout the study site. The observed effects were probably associated with the use of materials treated with insecticide at both sites because in Veracruz, people did not accept and use the pyriproxyfen chips. Conclusion Window curtains and domestic water container covers treated with insecticide can reduce densities of dengue vectors to low levels and potentially affect dengue transmission.
Background:The coronavirus disease 2019 (COVID-19) pandemic challenges hospital leaders to make time-sensitive, critical decisions about clinical operations and resource allocations.Objective: To estimate the timing of surges in clinical demand and the best-and worst-case scenarios of local COVID-19induced strain on hospital capacity, and thus inform clinical operations and staffing demands and identify when hospital capacity would be saturated.Design: Monte Carlo simulation instantiation of a susceptible, infected, removed (SIR) model with a 1-day cycle.Setting: 3 hospitals in an academic health system. Patients:All people living in the greater Philadelphia region. Measurements:The COVID-19 Hospital Impact Model (CHIME) (http://penn-chime.phl.io) SIR model was used to estimate the time from 23 March 2020 until hospital capacity would probably be exceeded, and the intensity of the surge, including for intensive care unit (ICU) beds and ventilators.Results: Using patients with COVID-19 alone, CHIME estimated that it would be 31 to 53 days before demand exceeds existing hospital capacity. In best-and worst-case scenarios of surges in the number of patients with COVID-19, the needed total capacity for hospital beds would reach 3131 to 12 650 across the 3 hospitals, including 338 to 1608 ICU beds and 118 to 599 ventilators.Limitations: Model parameters were taken directly or derived from published data across heterogeneous populations and practice environments and from the health system's historical data. CHIME does not incorporate more transition states to model infection severity, social networks to model transmission dynamics, or geographic information to account for spatial patterns of human interaction. Conclusion:Publicly available and designed for hospital operations leaders, this modeling tool can inform preparations for capacity strain during the early days of a pandemic.
Simple interventions may facilitate vector control and prevent periurban transmission of Chagas disease.
Summary Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector’s thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain persistent gaps in understanding of vital rates and drivers in mosquito-vectored disease systems, and vast holes in understanding for other arthropod vectored diseases. Empirical studies are needed to better understand the physiological constraints and socio-ecological processes that generate heterogeneity in critical transmission parameters, including vector survival and fitness. Likewise, laboratory experiments and transmission models must evaluate vector response to realistic field conditions, including variability in sociological and environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.