ARS-CoV-2 is the causal agent for COVID-19, and the World Health Organization classifies this virus as an airborne pathogen transmitted by asymptomatic, pre-symptomatic and symptomatic individuals through close contact via exposure to infected droplets and aerosols 1,2 . Although SARS-CoV-2 transmission can occur by activities involving the oral cavity, such as speaking, breathing, coughing, sneezing and even singing [3][4][5] , most attention has focused on the nasal-lung axis of infection 6 . Oral manifestations, such as taste loss, dry mouth and oral lesions, are evident in about half of COVID-19 cases [7][8][9] , although it remains unknown whether SARS-CoV-2 can directly infect and replicate in oral tissues, such as the salivary glands (SGs) or mucosa. This is critical because, if these are sites of early infection, they could play an important role in transmitting the virus to the lungs or the gastrointestinal tract via saliva, as has been suggested for other microbial-associated diseases, such as pneumonia 10 and inflammatory bowel diseases 11,12 (Extended Data Fig. 1a).SARS-CoV-2 uses host entry factors, such as ACE2 and TMPRSS family members (TMPRSS2 and TMPRSS4) 13,14 , and understanding the cell types that harbor these receptors is important for determining infection susceptibilities throughout the body [15][16][17] . ACE2 and TMPRSS2 expression has been reported in oral tissues 18,19 ; however, there are no comprehensive descriptions of viral entry factor expression nor direct confirmation of SARS-CoV-2 infection in oral tissues. We hypothesized that SGs and barrier epithelia of the oral cavity and oropharynx can be infected by SARS-CoV-2 and contribute to the transmission of SARS-CoV-2. To test this, we generated two human oral single-cell RNA sequencing (scRNA-seq) atlases to predict cell-specific susceptibilities to SARS-CoV-2 infection. We confirmed ACE2 and TMPRSS expression in SGs and oral mucosa epithelia. SARS-CoV-2 infection was confirmed using autopsy and outpatient samples. Saliva from asymptomatic individuals with COVID-19 demonstrated the potential for viral transmission. In a prospective clinical cohort, we found a positive correlation between salivary viral load and taste loss; we also demonstrated persistent salivary antibody responses to SARS-CoV-2 nucleocapsid and spike proteins. ResultsOral tissue atlases reveal resident immune cells and niche-specific epithelial diversity. The SGs and the barrier mucosa of the oral cavity and oropharynx are likely gateways for viral infection, replication SARS-CoV-2 infection of the oral cavity and saliva
This study determined whether morphokinetic variables between aneuploid and euploid embryos differ as a potential aid to select euploid embryos for transfer. Following insemination, EmbryoScope time-lapse images from 98 blastocysts were collected and analysed blinded to ploidy. The morphokinetic variables were retrospectively compared with ploidy, which was determined following trophectoderm biopsy and analysis by array comparative genomic hybridization or single-nucleotide polymorphic array. Multiple aneuploid embryos were delayed at the initiation of compaction (tSC; median 85.1 hours post insemination (hpi); P=0.02) and the time to reach full blastocyst stage (tB; median 110.9hpi, P=0.01) compared with euploid embryos (tSC median 79.7 hpi, tB median 105.9 hpi). Embryos having single or multiple aneuploidy (median 103.4 hpi, P=0.004 and 101.9 hpi, P=0.006, respectively) had delayed initiation of blastulation compared with euploid embryos (median 95.1hpi). No significant differences were observed in first or second cell-cycle length, synchrony of the second or third cell cycles, duration of blastulation, multinucleation at the 2-cell stage and irregular division patterns between euploid and aneuploid embryos. This non-invasive model for ploidy classification may be used to avoid selecting embryos with high risk of aneuploidy while selecting those with reduced risk.
Time-lapse imaging of human preimplantation IVF embryos has enabled objective algorithms based on novel observations of development (morphokinetics) to be used for clinical selection of embryos. Embryo aneuploidy, a major cause of IVF failure, has been correlated with specific morphokinetic variables used previously to develop an aneuploidy risk classification model. The purpose of this study was to evaluate the effectiveness and potential impact of this model for unselected IVF patients without biopsy and preimplantation genetic screening (PGS). Embryo outcomes - no implantation, fetal heart beat (FHB) and live birth (LB) - of 88 transferred blastocysts were compared according to calculated aneuploidy risk classes (low, medium, high). A significant difference was seen for FHB (P<0.0001) and LB (P<0.01) rates between embryos classified as low and medium risk. Within the low-risk class, relative increases of 74% and 56%, compared with rates for all blastocysts, were observed for FHB and LB respectively. The area under the receiver operating characteristic curve was 0.75 for FHB and 0.74 for LB. This study demonstrates the clinical relevance of the aneuploidy risk classification model and introduces a novel, non-invasive method of embryo selection to yield higher implantation and live birth rates without PGS.
Simple interventions may facilitate vector control and prevent periurban transmission of Chagas disease.
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we determined a circulating miRNA, miR-2392, is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of patients positive for COVID-19, but not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.