At face value, the term “synergy” provides a unifying concept within a fractured field that encompasses complementary neural, computational, and behavioral approaches. However, the term is not used synonymously by different researchers but has substantially different meanings depending on the research approach. With so many operational definitions for the one term, it becomes difficult to use as either a descriptive or explanatory concept, yet it remains pervasive and apparently indispensable. Here we provide a summary of different approaches that invoke synergies in a descriptive or explanatory context, summarizing progress, not within the one approach, but across the theoretical landscape. Bernstein’s framework of flexible hierarchical control may provide a unifying framework here, since it can incorporate divergent ideas about synergies. In the current motor control literature, synergy may refer to conceptually different processes that could potentially operate in parallel, across different levels within the same hierarchical control scheme. There is evidence for the concurrent existence of synergies with different features, both “hard-wired” and “soft-wired,” and task independent and task dependent. By providing a comprehensive overview of the multifaceted ideas about synergies, our goal is to move away from the compartmentalization and narrow the focus on one level and promote a broader perspective on the control and coordination of movement.
We suspected that the observed inconsistency of sex differences in drop-landing motor skills might be due to the confounding factor of prior experience. Thus, in this study, we explored the role of experience in shaping male and female surfboard riders' motor skill kinematics during drop landings while surfboard riding. We recruited 42 participants (21 females and 21 males) from three groups of surfing experience levels (competitive surfers, recreational surfers, and nonsurfers), each equally comprising seven males and seven females. Sagittal plane kinematics and vertical ground reaction force data were collected from all participants during a laboratory-based 60-cm drop-landing task. Knee flexion and ankle dorsiflexion at initial ground contact were greater among male participants, independent of experience level. In both sexes, greater range of motion at these joints was related to greater experience. Recreational female surfers landed in a more upright posture with more extended ankle and knee angles and less ankle dorsiflexion at the end of landing than participants in all other groups. We discuss our results in the context of possible remaining experience differences between male and female participants despite being grouped in the same experience levels in our study, individualized motor patterns that may still achieve similar success, and a need for continued research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.