On établit les formules des traces relatives de Jacques–Rallis grossières pour les groupes linéaires et unitaires. Les deux formules sont sous la forme suivante: une somme des distributions spectrales est égale à une somme des distributions géométriques. Pour établir les développements spectraux on introduit de nouveaux opérateurs de troncature et on étudie leur propriétés. Du côté géométrique, en utilisant les applications de Cayley, les développements s’obtiennent par un argument de descente vers les espaces tangents pour lesquels les formules sont connues grâce à nos travaux précédents.We establish the coarse relative trace formulae of Jacquet–Rallis for linear and unitary groups. Both formulae are of the form: a sum of spectral distributions equals a sum of geometric distributions. In order to obtain the spectral decompositions we introduce new truncation operators and we investigate their properties. On the geometric side, by means of the Cayley transform, the decompositions are derived from a procedure of descent to the tangent spaces for which the formulae are known thanks to our previous work.
Abstract. We establish an in nitesimal version of the Jacquet-Rallis trace formula for unitary groups. Our formula is obtained by integrating a truncated kernel à la Arthur. It has a geometric side which is a sum of distributions J o indexed by classes of elements of the Lie algebra of Upn` q stable by Upnq-conjugation as well as the "spectral side" consisting of the Fourier transforms of the aforementioned distributions. We prove that the distributions J o are invariant and depend only on the choice of the Haar measure on UpnqpAq. For regular semi-simple classes o, J o is a relative orbital integral of Jacquet-Rallis. For classes o called relatively regular semi-simple, we express J o in terms of relative orbital integrals regularised by means of zêta functions.
We establish an infinitesimal version of the Jacquet-Rallis trace formula for general linear groups. Our formula is obtained by integrating a kernel truncated à la Arthur multiplied by the absolute value of the determinant to the power $s\in \mathbb{C}$. It has a geometric side which is a sum of distributions $I_{\mathfrak{o}}(s,\cdot )$ indexed by the invariants of the adjoint action of $\text{GL}_{n}(\text{F})$ on $\mathfrak{gl}_{n+1}(\text{F})$ as well as a «spectral side» consisting of the Fourier transforms of the aforementioned distributions. We prove that the distributions $I_{\mathfrak{o}}(s,\cdot )$ are invariant and depend only on the choice of the Haar measure on $\text{GL}_{n}(\mathbb{A})$. For regular semi-simple classes $\mathfrak{o}$, $I_{\mathfrak{o}}(s,\cdot )$ is a relative orbital integral of Jacquet-Rallis. For classes $\mathfrak{o}$ called relatively regular semi-simple, we express $I_{\mathfrak{o}}(s,\cdot )$ in terms of relative orbital integrals regularised by means of zeta functions.
MICHAŁ ZYDORRésumé. Nous établissons une variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes unitaires. Notre formule s'obtient par intégration d'un noyau tronqué à la Arthur. Elle possède un côté géométrique qui est une somme de distributions Jo indexée par les classes d'éléments de l'algèbre de Lie de U pn `1q stables par U pnq-conjugaison ainsi qu'un "côté spectral" formé des transformées de Fourier des distributions précédentes. On démontre que les distributions Jo sont invariantes et ne dépendent que du choix de la mesure de Haar sur U pnqpAq. Pour des classes o semi-simples régulières Jo est une intégrale orbitale relative de Jacquet-Rallis. Pour les classes o dites relativement semi-simples régulières, on exprime Jo en terme des intégrales orbitales relatives régularisées à l'aide des fonctions zêta.
In this paper, we prove the Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture for unitary groups Un × Un+1 in all the endoscopic cases. Our main technical innovation is the computation of the contributions of certain cuspidal data, called * -generic, to the Jacquet-Rallis trace formula for linear groups. We offer two different computations of these contributions: one, based on truncation, is expressed in terms of regularized Rankin-Selberg periods of Eisenstein series and Flicker-Rallis intertwining periods. The other, built upon Zeta integrals, is expressed in terms of functionals on the Whittaker model. A direct proof of the equality between the two expressions is also given. Finally several useful auxiliary results about the spectral expansion of the Jacquet-Rallis trace formula are provided.10 Proofs of the Gan-Gross-Prasad and Ichino-Ikeda conjectures 10.1 Identities among some global relative characters .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.