Due to an interplay between intestinal microbiota and immune system, disruption of intestinal microbiota composition during immune development may have consequences for immune responses later in life. The present study investigated the effects of antibiotic treatment in the first weeks of life on the specific antibody response later in life in chickens. Layer chicks received an antibiotic cocktail consisting of vancomycin, neomycin, metronidazole, and amphotericin-B by oral gavage every 12 h, and ampicillin and colistin in drinking water for the first week of life. After the first week of life, chicks received ampicillin and colistin in drinking water for two more weeks. Control birds received no antibiotic cocktail and plain drinking water. Fecal microbiota composition was determined during antibiotic treatment (d 8 and 22), two weeks after cessation of antibiotic treatment (d 36), and at the end of the experimental period at d 175 using a 16S ribosomal RNA gene targeted microarray, the Chicken Intestinal Tract Chip (ChickChip). During antibiotic treatment fecal microbiota composition differed strongly between treatment groups. Fecal microbiota of antibiotic treated birds consisted mainly of Proteobacteria, and in particular E.coli, whereas fecal microbiota of control birds consisted mainly of Firmicutes, such as lactobacilli and clostridia. Two weeks after cessation of antibiotic treatment fecal microbiota composition of antibiotic treated birds had recovered and was similar to that of control birds. On d 105, 12 weeks after cessation of antibiotic treatment, chicks of both treatment groups received an intra-tracheal lipopolysaccharide (LPS)/human serum albumin (HuSA) challenge. Antibody titers against LPS and HuSA were measured 10 days after administration of the challenge. While T cell independent antibody titers (LPS) were not affected by antibiotic treatment, antibiotic treated birds showed lower T cell dependent antibody titers (HuSA) compared with control birds. In conclusion, intestinal microbial dysbiosis early in life may still have effects on the specific antibody response months after cessation of antibiotic treatment and despite an apparent recovery in microbiota composition.
Beta-glucan-stimulated mammalian myeloid cells, such as macrophages, show an increased responsiveness to secondary stimulation in a nonspecific manner. This phenomenon is known as trained innate immunity and is important to prevent reinfections. Trained innate immunity seems to be an evolutionary conserved phenomenon among plants, invertebrates and mammalian species. Our study aimed to explore the training of primary chicken monocytes. We hypothesized that primary chicken monocytes, similar to their mammalian counterparts, can be trained with β-glucan resulting in increased responses of these cells to a secondary stimulus. Primary blood monocytes of white leghorn chickens were primary stimulated with β-glucan microparticulates (M-βG), lipopolysaccharide (LPS), recombinant chicken interleukin-4 (IL-4) or combinations of these components for 48 h. On day 6, the primary stimulated cells were secondary stimulated with LPS. Nitric oxide (NO) production levels were measured as an indicator of pro-inflammatory activity. In addition, the cells were analyzed by flow cytometry to characterize the population of trained cells and to investigate the expression of surface markers associated with activation. After the secondary LPS stimulation, surface expression of colony stimulating factor 1 receptor (CSF1R) and the activation markers CD40 and major histocompatibility complex class II (MHC-II) was higher on macrophages that were trained with a combination of M-βG and IL-4 compared to unstimulated cells. This increased expression was paralleled by enhanced NO production. In conclusion, this study showed that trained innate immunity can be induced in primary chicken monocytes with β-glucan, which is in line with previous experiments in mammalian species. Innate immune training may have the potential to improve health and vaccination strategies within the poultry sector.
Activation of the maternal immune system may affect innate and adaptive immune responses in the next generation and may therefore have implications for vaccine efficacy and dietary immune modulation by feed additives. However, transgenerational effects on immune responses in chickens have been investigated to a limited extend. The present study investigated effects of intratracheal (i.t) specific and aspecific immune activation of laying hens on specific antibody production in the next generation. In two experiments laying hens received intratracheally an immune stimulus with human serum albumin (HuSA) or lipopolysaccharide (LPS). In experiment 1, hatchlings of the immune activated hens were at 4 weeks i.t. immunized with HuSA or HuSA+LPS. Maternal immune activation with LPS increased HuSA specific IgY and IgM responses in offspring. These results suggest a transgenerational effect of the maternal immune system on the specific antibody response in the next generation. In experiment 2 hatchlings received either β-glucan-enriched feed or control feed and were i.t. immunized with HuSA. Maternal immune activation with LPS decreased IgY anti-HuSA responses after HuSA immunization within hatchlings that received β-glucan enriched feed. The results of Experiment 2 suggest a transgenerational link between the innate immune system of mother and specific antibody responses in offspring. Despite variabilities in the outcomes of the two experiments, the observations of both suggest a link between the maternal innate immune system and the immune system of the offspring. Furthermore, our results may imply that maternal activation of the innate immune system can influence immune modulating dietary interventions and vaccine strategies in the next generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.