Conclusions:The potent antitumor activity as a single agent in preclinical models combined with its favorable pharmacodynamic profile makes JNJ-26481585 a promising "second-generation" HDAC inhibitor. The compound is currently in clinical studies, to evaluate its potential applicability in a broad spectrum of both solid and hematologic malignancies. (Clin Cancer Res 2009;15(22):6841-51)
Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.
The Mus81-Eme1 endonuclease is implicated in the efficient rescue of broken replication forks in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
The Chk2 kinase is a tumor suppressor and key component of the DNA damage checkpoint response that encompasses cell cycle arrest, apoptosis, and DNA repair. It has also been shown to have a role in replicative senescence resulting from dysfunctional telomeres. Some of these functions are at least partially exerted through activation of the p53 transcription factor. High-level expression of virally transduced Chk2 in A549 human lung carcinoma cells led to arrested proliferation, apoptosis, and senescence. These were accompanied by various molecular events, including p21Waf1/Cip1 (p21) transcriptional induction, consistent with p53 activation. However, Chk2-dependent senescence and p21 transcriptional induction also occurred in p53-defective SK-BR-3 (breast carcinoma) and HaCaT (immortalized keratinocyte) cells. Small interfering RNA -mediated knockdown of p21 in p53-defective cells expressing Chk2 resulted in a decrease in senescent cells. These results revealed a p53-independent role for Chk2 in p21 induction and senescence that may contribute to tumor suppression and genotoxic treatment outcome. (Mol Cancer Res 2005;3(11):627 -34)
Hetorologous proteins can be expressed in Xenopus laevis oocytes by cytoplasmic micro'iJection of mRNA. To circumvent limitations inherent in this approach we investigate direct nuclear injection of strong viral expression vectors to drive transcription and subsequent translation of cDNAs encoding Cytoplasmic, secreted, and plasma membrane proteins. After several viral promoters had been tested, the pMT2 vector was found to be a superior expression vector for X. laevis oocytes capable of directing expression of high levels of functional heterologous proteins. Typically the amount of protein derived from transcription-translation of the microinjected cDNA accounts for "4% of total non-yolk protein.Moreover, the inefficiency usually associated with nuclear injections was overcome by coinjection of pMT2 driving expression of a secreted alkaline phosphatase as an internal control to select positive-expressing oocytes. Using this method, we have successfully expressed high levels of chioramphenicol acetyltransferase, the adipocyte-specific cytosolic 422 (aP2) protein, and the membrane-associated glucose transporter GLUT1. The system described should be applicable to a wide variety of proteins for which cDNAs are available. Hence, the cumbersome and often inefficient in vitro synthesis of mRNA for studying ion channels, receptors, and transporters as well as for expression cloning in Xenopus oocytes should no longer be necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.