Neurofibrillary tangles composed of hyperphosphorylated fibrillized tau are found in numerous tauopathies including Alzheimer's disease. Increasing evidence suggests that tau pathology can be transmitted from cell-to-cell; however the mechanisms involved in the initiation of tau fibrillization and spreading of disease linked to progression of tau pathology are poorly understood. We show here that intracerebral injections of preformed synthetic tau fibrils into the hippocampus or frontal cortex of young tau transgenic mice expressing mutant human P301L tau induces tau hyperphosphorylation and aggregation around the site of injection, as well as a time-dependent propagation of tau pathology to interconnected brain areas distant from the injection site. Furthermore, we show that the tau pathology as a consequence of injection of tau preformed fibrils into the hippocampus induces selective loss of CA1 neurons. Together, our data confirm previous studies on the seeded induction and the spreading of tau pathology in a different tau transgenic mouse model and reveals neuronal loss associated with seeded tau pathology in tau transgenic mouse brain. These results further validate the utility of the tau seeding model in studying disease transmission, and provide a more complete in vivo tauopathy model with associated neurodegeneration which can be used to investigate the mechanisms involved in tau aggregation and spreading, as well as aid in the search for disease modifying treatments for Alzheimer's disease and related tauopathies.
The enzyme phosphodiesterase 10A (PDE10A) regulates the activity of striatal, medium spiny neurons (MSNs), which are divided into a behaviorally stimulating, Gs-coupled D1 receptor-expressing “direct” pathway and a behaviorally suppressant, Gi-coupled D2 receptor-expressing “indirect” pathway. Activating both pathways, PDE10A inhibitors (PDE10AIs) combine functional characteristics of D2 antagonists and D1 agonists. While the effects of PDE10AIs on spontaneous and stimulated behavior have been extensively reported, the present study investigates their effects on suppressed behavior under various conditions of reduced dopaminergic neurotransmission: blockade of D1 receptors with SCH-23390, blockade of D2 receptors with haloperidol, or depletion of dopamine with RO-4-1284 or reserpine. In rats, PDE10AIs displayed relatively low cataleptic activity per se. After blocking D1 receptors, however, they induced pronounced catalepsy at low doses close to those required for inhibition of apomorphine-induced behavior; slightly higher doses resulted in behavioral stimulant effects, counteracting the catalepsy. PDE10AIs also counteracted catalepsy and related behaviors induced by D2 receptor blockade or dopamine depletion; catalepsy was replaced by behavioral stimulant effects under the latter but not the former condition. Similar interactions were observed at the level of locomotion in mice. At doses close to those inhibiting d-amphetamine-induced hyperlocomotion, PDE10AIs reversed hypolocomotion induced by D1 receptor blockade or dopamine depletion but not hypolocomotion induced by D2 receptor blockade. It is concluded that PDE10AIs stimulate or inhibit motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways.
Rationale Rodents are usually used to assess the ability of antipsychotic drugs to antagonize hyperlocomotion induced by dopamine agonists, such as the psychostimulant d-amphetamine. However, the substantial differences between rodents and humans may hinder extrapolation of experimental results to humans. For this reason, we speculated that Göttingen miniature pigs, which show strong physiological and genetic homology with humans, might be a better model for investigating the effects of antipsychotics. To investigate this, we determined whether d-amphetamine induced hyperlocomotion in miniature pigs and whether this effect was reversible by antipsychotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.