The 2019 Havemeyer Workshop brought together researchers and clinicians to discuss the latest information on Equine Asthma and provide future research directions. Current clinical and molecular asthma phenotypes and endotypes in humans were discussed and compared to asthma phenotypes in horses. The role of infectious and non-infectious causes of equine asthma, genetic factors and proposed disease pathophysiology were reviewed. Diagnostic limitations were evident by the limited number of tests and biomarkers available to field practitioners. The participants emphasized the need for more accessible, standardized diagnostics that would help identify specific phenotypes and endotypes in order to create more targeted treatments or management strategies. One important outcome of the workshop was the creation of the Equine Asthma Group that will facilitate communication between veterinary practice and research communities through published and easily accessible guidelines and foster research collaboration.
Animal models have been studied to unravel etiological, immunopathological, and genetic attributes leading to asthma. However, while experiments in which the disease is artificially induced have helped discovering biological and molecular pathways leading to allergic airway inflammation, their contribution to the understanding of the causality of the disease has been more limited. Horses naturally suffer from an asthma-like condition called "heaves" which presents sticking similarities with human asthma. It is characterized by reversible airway obstruction, airway neutrophilic inflammation, and a predominant Th2 immune response. This model allows one to investigate the role of neutrophils in asthma, which remains contentious, the regulation of chronic neutrophilic inflammation, and their possible implication in pulmonary allergic responses. Furthermore, the pulmonary remodeling features in heaves closely resemble those of human asthma, which makes this model unique to investigate the kinetics, reversibility, as well as the physiological consequences of tissue remodeling. In conclusion, heaves and asthma share common clinical presentation and also important immunological and tissue remodeling features. This makes heaves an ideal model for the discovery of novel pathways implicated in the asthmatic inflammation and associated tissue remodeling.
Asthmatic airways are inflamed and undergo remodelling. Inhaled corticosteroids and long-acting β2-agonist combinations are more effective than inhaled corticosteroid monotherapy in controlling disease exacerbations, but their effect on airway remodelling and inflammation remains ill-defined. This study evaluates the contribution of inhaled fluticasone and salmeterol, alone or combined, to the reversal of bronchial remodelling and inflammation. Severely asthmatic horses (6 horses/group) were treated with fluticasone, salmeterol, fluticasone/salmeterol, or with antigen avoidance for 12 weeks. Lung function, central and peripheral airway remodelling, and bronchoalveolar inflammation were assessed. Fluticasone/salmeterol and fluticasone monotherapy decreased peripheral airway smooth muscle remodelling after 12 weeks (p = 0.007 and p = 0.02, respectively). On average, a 30% decrease was observed with both treatments. In central airways, fluticasone/salmeterol reversed extracellular matrix remodelling after 12 weeks, both within the lamina propria (decreased thickness, p = 0.005) and within the smooth muscle layer (p = 0.004). Only fluticasone/salmeterol decreased bronchoalveolar neutrophilia (p = 0.03) to the same extent as antigen avoidance already after 8 weeks. In conclusion, this study shows that fluticasone/salmeterol combination decreases extracellular matrix remodelling in central airways and intraluminal neutrophilia. Fluticasone/salmeterol and fluticasone monotherapy equally reverse peripheral airway smooth muscle remodelling.
Summary Background Inhaled corticosteroids are effective for the treatment of equine asthma but they induce cortisol suppression with potential side effects. Objectives To study the efficacy of ciclesonide, an inhaled corticosteroid with an improved safety profile, on lung function, clinical signs related to airway obstruction, and serum cortisol levels in asthmatic horses exposed to a mouldy hay challenge. Study design Cross‐over placebo controlled, blinded, randomised experiment. Methods Sixteen horses were enrolled in three subsequent dose‐titration studies (8 horses/study) to investigate the effects of inhaled ciclesonide administered for 2 weeks at doses ranging from 450 to 2700 μg twice daily or 3712.5 μg once daily. Systemic dexamethasone (0.066 mg/kg per os) was our positive control. A placebo group was also studied. Lung function and clinical scores were blindly performed before and after 7 and 14 days of treatment. Serum cortisol was measured before and after 3, 5, 7, 10, 14 days of treatment as well as 3 and 7 days post treatment. Results After 7 days, dexamethasone induced a significant reduction in pulmonary resistance (from 2.5 ± 0.6 at day 0 to 1.1 ± 0.7 cm H2O/L/s), pulmonary elastance (5.0 ± 2.6 to 1.2 ± 1.0 cm H2O/L), and of the weighted clinical score (14.8 ± 4.7 to 8.0 ± 4.4). Similarly, ciclesonide 1687.5 μg twice daily significantly improved pulmonary resistance (2.7 ± 1.1 to 1.6 ± 0.8 cm H2O/L/s), pulmonary elastance (5.2 ± 3.1 to 2.2 ± 1.3 cm H2O/L), and weighted clinical score (13 ± 2.9 to 10.8 ± 4.2). Serum cortisol suppression (<50 nmol/L) systematically occurred with dexamethasone from day 3 of treatment up to day 3 post treatment, but not with ciclesonide at any tested doses. Placebo did not exert any significant beneficial effect. Main limitations Experimentally induced asthma exacerbations in horses might respond differently to treatment than naturally occurring exacerbations. Conclusions Inhaled ciclesonide is an effective treatment for horses with equine asthma. Serum cortisol was unaffected by treatment.
Information on the clinical traits associated with bronchial neutrophilia in asthma is scant, preventing its recognition and adequate treatment. We aimed to assess the clinical, functional and biological features of neutrophilic asthma and identify possible predictors of bronchial neutrophilia.The inflammatory phenotype of 70 mild-to-severe asthma patients was studied cross-sectionally based on the eosinophilic/neutrophilic counts in their bronchial lamina propria. Patients were classified as neutrophilic or non-neutrophilic. Neutrophilic asthma patients (neutrophil count cut-off: 47.17 neutrophils·mm−2; range: 47.17–198.11 neutrophils·mm−2; median: 94.34 neutrophils·mm−2) were further classified as high (≥94.34 neutrophils·mm−2) or intermediate (47.17– <94.34 neutrophils·mm−2). The effect of smoking ≥10 pack-years was also assessed.Neutrophilic asthma patients (n=38; 36 mixed eosinophilic/neutrophilic) had greater disease severity, functional residual capacity, inhaled corticosteroid (ICS) dose and exacerbations, and lower forced vital capacity (FVC) % pred and forced expiratory volume in 1 s (FEV1) reversibility than non-neutrophilic asthma patients (n=32; 28 eosinophilic and four paucigranulocytic). Neutrophilic asthma patients had similar eosinophil counts, increased bronchial CD8+, interleukin (IL)-17-F+ and IL-22+ cells, and decreased mast cells compared with non-neutrophilic asthma patients. FEV1 and FVC reversibility were independent predictors of bronchial neutrophilia in our cohort. High neutrophilic patients (n=21) had increased serum IgE levels, sensitivity to perennial allergens, exacerbation rate, oral corticosteroid dependence, and CD4+ and IL-17F+ cells in their bronchial mucosa. Excluding smokers revealed increased IL-17A+ and IL-22+ cells in highly neutrophilic patients.We provide new evidence linking the presence of high bronchial neutrophilia in asthma to an adaptive immune response associated with allergy (IgE) and IL-17/22 cytokine expression. High bronchial neutrophilia may discriminate a new endotype of asthma. Further research is warranted on the relationship between bronchoreversibility and bronchial neutrophilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.