During folliculogenesis, primary oocytes of teleosts grow by several orders of magnitude by-self synthesizing proteins and mRNA, or sequestering from blood specific macromolecular components, such as fatty acids and vitellogenin. All these materials are stored into cortical alveoli, yolk globules or oil droplets during oocyte development. The proper synthesis, storage and displacement of these macromolecular components inside the oocyte play a key role for a successful fertilization process and for the subsequently correct embryo development. In this study, for the first time, the FTIR Imaging (FTIRI) spectroscopy has been applied to characterize the chemical building blocks of several cellular components of swordfish oocytes at different developmental stages. In particular, the spectral features of previtellogenic (PV), vitellogenic (VTG), mature (M) and atretic (A) follicles as well as and of cortical alveoli (CA), yolk vesicles (YV), oil droplets (OD) and Zona Radiata (ZR) have been outlined, providing new insights in terms of composition and topographical distribution of macromolecules of biological interest such as lipids, proteins, carbohydrates and phosphates. The macromolecular characterization of swordfish oocytes at different developmental stages represents a starting point and a useful tool for the assessment of swordfish egg quality caught in different conditions, such as periods of the year or different fishing area.
The Mediterranean swordfish ( Xiphias gladius ) has been recently classified as overfished and in 2016, the International Commission for the Conservation of the Atlantic Tunas (ICCAT) established a multi-annual management plan to recover this stock. To successfully achieve this goal, knowledge about swordfish biology is needed. To date, few studies on swordfish have been performed and none of them has provided useful insights into the reproductive biology at molecular level. Here we set to characterise the molecular dynamics underlying ovarian maturation by employing a de novo transcriptome assembly approach. Differential gene expression analysis in mature and immature ovaries identified a number of differentially expressed genes associated with biological processes driving ovarian maturation. Focusing on ovarian steroidogenesis and vitellogenin uptake, we depict the molecular dynamics characterizing these processes while a phylogenetic analysis let us identify a candidate vitellogenin receptor. This is the first swordfish transcriptome assembly and these findings provide in-depth understanding of molecular processes describing ovarian maturation. Moreover, the establishment of a publicly available database containing information on the swordfish transcriptome aims to boost research on this species with the long-term of developing more comprehensive and successful stock management plans.
In vertebrates, the regulation of gametogenesis is under the control of gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh). In fish, the physiological role of Gths is not fully understood, especially in species with asynchronous ovarian development. To elucidate the role of Gths in species with asynchronous ovary, we studied European hake (Merluccius merluccius) during the reproductive season. For this aim, we first cloned and sequenced both hormones. Then, we characterized their amino acid sequence and performed phylogenetic analyses to verify the relationship to their orthologues in other species. In addition, the quantification of gene expression during their natural reproductive season was analyzed in wild-caught female hake. Our results revealed that fshb peaked during the vitellogenic phase, remaining high until spawning. This is in contrast to the situation in species with synchronous ovary. lhb, on the other hand, peaked during maturation as it is also common in species with synchronous ovarian development. Finally, combining double-labeling fluorescent in situ hybridization (FISH) for Gth mRNAs with immunofluorescence for Lh protein, we evidenced the specific expression of fshb and lhb in different cells within the proximal pars distalis (PPD) of the pituitary. In addition to gonadotrope cells specific to expression of either fshb or lhb, some cells showed co-expression of both genes. This suggests either that gonadotropes with co-expression are not yet specified or they could have a plasticity that permits changes from one cell phenotype to another during certain life stages and in turn during different physiological states.
Effective stock assessment relies on the evaluation of the reproductive potential of a population, but this is often achieved using fast, inexpensive, and inaccurate macroscopic indicators of gonadal maturity. Indeed, this approach suffers from high error rates as a result of misclassification and operator errors. Although histology is considered the gold standard to assign reproductive stages, it represents a time‐consuming and expensive method. Therefore, cost‐effective approaches are currently needed to assess the species‐specific reproductive potential and define the correct size at first maturity (L50). In the present study a histology‐calibrated method based on the gonadal index (GI) was developed to assign maturity stages to the overfished Mediterranean swordfish (Xiphias gladius), supported by histological classification of gonadal development, an estimation of L50, and an analysis of the reproductive output of this species. The performance of this new method had an overall agreement of 90% with histological data, and the L50 calculated by the GI‐based method compared with histology analysis was not statistically different (p > 0.05). Moreover, in order to apply this method without bias, a thorough validation of the relationship between length and gonad weight was carried out and the suitability of the GI to compare individuals of different size and maturity stages was confirmed. The present findings provide a comprehensive picture of the patterns characterizing Mediterranean swordfish reproduction and a promising method to assign maturity stages based on a macroscopic indicator. This method has the potential to be extensively applied during routine fish sampling activities in the field because of its simple requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.