A novel lectin has been isolated from the fruiting bodies of the common edible mushroom Boletus edulis (king bolete, penny bun, porcino or cep) by affinity chromatography on a chitin column. We propose for the lectin the name BEL (B. edulis lectin). BEL inhibits selectively the proliferation of several malignant cell lines and binds the neoplastic cell-specific T-antigen disaccharide, Galβ1-3GalNAc. The lectin was structurally characterized: the molecule is a homotetramer and the 142-amino acid sequence of the chains was determined. The protein belongs to the saline-soluble family of mushroom fruiting body-specific lectins. BEL was also crystallized and its three-dimensional structure was determined by X-ray diffraction to 1.15 Å resolution. The structure is similar to that of Agaricus bisporus lectin. Using the appropriate co-crystals, the interactions of BEL with specific mono- and disaccharides were also studied by X-ray diffraction. The six structures of carbohydrate complexes reported here provide details of the interactions of the ligands with the lectin and shed light on the selectivity of the two distinct binding sites present in each protomer.
A novel lectin was purified from the fruiting bodies of king bolete mushrooms (Boletus edulis, also called porcino, cep or penny bun). The lectin was structurally characterized i.e its amino acid sequence and three-dimensional structure were determined. The new protein is a homodimer and each protomer folds as β-trefoil domain and therefore we propose the name Boletus edulis lectin (BEL) β-trefoil to distinguish it from the other lectin that has been described in these mushrooms. The lectin has potent anti-proliferative effects on human cancer cells, which confers to it an interesting therapeutic potential as an antineoplastic agent. Several crystal forms of the apoprotein and of complexes with different carbohydrates were studied by X-ray diffraction. The structure of the apoprotein was solved at 1.12 Å resolution. The interaction of the lectin with lactose, galactose, N-acetylgalactosamine and T-antigen disaccharide, Galβ1-3GalNAc, was examined in detail. All the three potential binding sites present in the β-trefoil fold are occupied in at least one crystal form and are described in detail in this paper. No important conformational changes are observed in the lectin when comparing its co-crystals with carbohydrates with those of the ligand-free protein.
BackgroundMolecularly imprinted polymer (MIP) technique is a powerful mean to produce tailor made synthetic recognition sites. Here precipitation polymerization was exploited to produce a library of MIP nanoparticles (NPs) targeting the N terminus of the hormone Hepcidin-25, whose serum levels correlate with iron dis-metabolisms and doping. Biotinylated MIP NPs were immobilized to NeutrAvidin™ SPR sensor chip. The response of the MIP NP sensor to Hepcidin-25 was studied.FindingsMorphological analysis showed MIP NPs of 20–50 nm; MIP NP exhibited high affinity and selectivity for the target analyte: low nanomolar Kds for the interaction NP/Hepcidin-25, but none for the NP/non regulative Hepcidin-20. The MIP NP were integrated as recognition element in SPR allowing the detection of Hepcidin-25 in 3 min. Linearity was observed with the logarithm of Hepcidin-25 concentration in the range 7.2–720 pM. LOD was 5 pM. The response for Hepcidin-20 was limited. Hepcidin-25 determination in real serum samples spiked with known analyte concentrations was also attempted.ConclusionThe integration of MIP NP to SPR allowed the determination of Hepcidin-25 at picomolar concentrations in short times outperforming the actual state of art. Optimization is still needed for real sample measurements in view of future clinical applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s12951-015-0115-3) contains supplementary material, which is available to authorized users.
The SOUL protein is known to induce apoptosis by provoking the mitochondrial permeability transition, and a sequence homologous with the BH3 (Bcl-2 homology 3) domains has recently been identified in the protein, thus making it a potential new member of the BH3-only protein family. In the present study, we provide NMR, SPR (surface plasmon resonance) and crystallographic evidence that a peptide spanning residues 147–172 in SOUL interacts with the anti-apoptotic protein Bcl-xL. We have crystallized SOUL alone and the complex of its BH3 domain peptide with Bcl-xL, and solved their three-dimensional structures. The SOUL monomer is a single domain organized as a distorted β-barrel with eight anti-parallel strands and two α-helices. The BH3 domain extends across 15 residues at the end of the second helix and eight amino acids in the chain following it. There are important structural differences in the BH3 domain in the intact SOUL molecule and the same sequence bound to Bcl-xL.
For targeted brain delivery, nanoparticles (NPs) should bypass the blood-brain barrier (BBB). Novel functionalization strategies, based on low-density lipoprotein receptor (LDLR) binding domain, have been here tested to increase the brain targeting efficacy of poly d,l-lactic-co-glycolic acid (PLGA) NPs, biodegradable and suited for biomedical applications. Custom-made PLGA NPs were functionalized with an apolipoprotein E modified peptide (pep-apoE) responsible for LDLR binding, or with lipocalin-type prostaglandin-d-synthase (L-PGDS), highly expressed in the brain. At the comparison of pep-apoE and L-PGDS sequences, a highly homologs region was here identified, indicating that also L-PGDS could bind LDLR. Non-functionalized and functionalized NPs did not affect the viability of cultured human dendritic cells, protagonists of the immune response, and did not activate them to a proinflammatory profile. At 2 h after intravenous injection in mice, functionalized, but not the non-functionalized ones, fluorescent-tagged NPs were observed in the cerebral cortex parenchyma. The NPs were mostly internalized by neurons and microglia; glial cells showed a weak activation. The findings indicate that the tested functionalization strategies do not elicit adverse immune responses and that the peptidic moieties enable BBB traversal of the NPs, thus providing potential brain drug carriers. These could be especially effective for brain diseases in which LDLR is involved. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 847-858, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.