Wrinkling is an important mechanical phenomenon that generates periodic topographical patterns across a surface. This paper presents experimental evidence that surface wrinkles, which form consequent to thin film magnetron sputtering of either indium tin oxide (ITO) or aluminum on poly(dimethylsiloxane) networks (PDMS-N) made from a commercial Sylgard-184 kit, result from chemical modification of the PDMS-N surface as opposed to extrinsic thermomechanical stresses originating from differential thermal expansion. X-ray photoelectron spectroscopy results reveal that the PDMS-N surface becomes depleted in carbon and concurrently enriched in oxygen relative to silicon due to sputtering. This silica-like surface layer possesses intrinsic compressive stress that leads to wrinkle formation during the first z5 seconds of sputtering. The wrinkles maintain their periodicity irrespective of the thickness of the ITO film formed during subsequent deposition. Furthermore, upon removal of the ITO layer, the wrinkles persist with their periodicity unchanged. A narrow sputtering pressure window between 2 and 12 mTorr generates wrinkles. Pressures below this range cannot sustain a radio frequency plasma, while pressures above this range provide sufficient thermalization of kinetic energy as to eliminate the energetic bombardment that modifies the PDMS-N. This study provides a new understanding of the origins of wrinkling in sputtered films on polymeric substrates and creates opportunities to manipulate the topography produced by spontaneous surface wrinkling.
Organic photovoltaic (OPVs) devices are promising due to their low cost, light weight, and compatibility with high throughput processing on flexible substrates. This paper demonstrates a simple process utilizing thin-film instabilities to enhance light absorption in OPVs in a way that is compatible with planar processing and the customary thermal annealing steps. Placing a thin, transparent polystyrene (PS) film between the glass substrate and the transparent conductive indium tin oxide (ITO) electrode results in the formation of periodic surface buckles in the PS layer due to induced strain caused by thermal expansion mismatch between the ITO and PS films. OPVs comprising bilayer laminates of copper phthalocyanine (CuPc) and fullerene (C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.