M 1 muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, benzylquinolone carboxylic acid (BQCA), which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M 1 receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M 1 receptor affinity for acetylcholine. We found that activation of the M 1 receptor by BQCA induces a robust inward current and increases spontaneous EPSCs in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M 1 receptor knock-out mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M 1 receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M 1 receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M 1 mAChR subtype may ameliorate impairments in cognitive function.
Whole-brain irradiation is used for the treatment of brain tumors, but can it also induce neural changes, with progressive dementia occurring in 20-50% of long-term survivors. The present study investigated whether 45 Gy of whole-brain irradiation delivered to 12-month-old Fischer 344 x Brown Norway rats as nine fractions over 4.5 weeks leads to impaired Morris water maze (MWM) performance 12 months later. Compared to sham-irradiated rats, the irradiated rats demonstrated impaired MWM performance. The relative levels of the NR1 and NR2A but not the NR2B subunits of the NMDA receptor were significantly higher in hippocampal CA1 of irradiated rats compared to control rats. No significant differences were detected for these NMDA subunits in CA3 or dentate gyrus. Further analysis of CA1 revealed that the relative levels of the GluR1 and GluR2 subunits of the AMPA receptor and synaptophysin were not altered by whole-brain irradiation. In summary, a clinically relevant regimen of fractionated whole-brain irradiation led to significant impairments in spatial learning and reference memory and alterations in the relative levels of subunits of the NMDA, but not the AMPA, receptors in hippocampal CA1. These findings suggest for the first time that radiation-induced cognitive impairments may be associated with alterations in glutamate receptor composition.
Background: Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil) as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.