Ebola virus (EBOV) disease outbreaks, as well as the ability of EBOV to persist in the environment under certain conditions, highlight the need to develop effective decontamination techniques against the virus. We evaluated the efficacy of hydrogen peroxide vapor (HPV) to inactivate MS2 and Phi6 bacteriophages, the latter a recommended surrogate for EBOV. The phages were inoculated onto six material types with and without the presence of whole human blood. The inoculated materials were then exposed to either a high or low concentration of HPV for various elapsed times. The phages were also recovered from positive controls at these same elapsed times, to assess environmental persistence and decontamination efficacy. Low concentration hydrogen peroxide vapor (LCHP; 25 ppm) was effective against both phages on all materials without the presence of blood at 2 h. LCHP was ineffective against the phages in the presence of blood, on all materials, even with a 3-day contact time. Higher concentrations of HPV (>400 ppm) with contact times of 24−32 h achieved approximately 2−6 log reduction of the phages in the presence of blood.
Aims The purpose of this study was to evaluate the effects of altered environmental conditions on the persistence of Francisella tularensis bacteria and Venezuelan equine encephalitis virus (VEEV), on two material types. Methods and Results Francisella tularensis (F.t.) and VEEV were inoculated (c. 1 × 108 colony‐forming units or PFU), dried onto porous and nonporous fomites (glass and paper), and exposed to combinations of altered environmental conditions ranging from 22 to 60°C and 30 to 75% relative humidity (RH). Viability of test organism was assessed after contact times ranging from 30 min to 10 days. Inactivation rates of F.t. and VEEV increased as both temperature and/or RH were increased. Greater efficacy was observed for paper as compared to glass for both test organisms. Conclusions The use of elevated temperature and RH increased rate of inactivation for both organisms and greater than six log reduction was accomplished in as little as 6 h by elevating temperature to approximately 60°C. Significance and Impact of the Study These results provide information for inactivation of nonspore‐forming select agents using elevated temperature and humidity which may aid incident commanders following a biological contamination incident by providing alternative methods for remediation.
Introduction: This effort investigated formaldehyde vapor characteristics under various environmental conditions by the analyses of air samples collected over a time-course. This knowledge will help responders achieve desired formaldehyde exposure parameters for decontamination of affected spaces after a biological contamination incident. Methods: Prescribed masses of paraformaldehyde and formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor. Adsorbent cartridges were used to collect air samples from the test chamber at predetermined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. In addition, material demand for the formaldehyde was evaluated by inclusion of arrays of Plexiglas panels in the test chamber to determine the impact of varied surface areas within the test chamber. Temperature was controlled with a circulating water bath connected to a radiator and fan inside the chamber. Relative humidity was controlled with humidity fixed-point salt solutions and water vapor generated from evaporated water. Results: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations in the ambient temperature trials (approximately 22°C). The addition of clear Plexiglas panels to increase the surface area of the test chamber interior resulted in appreciable decreases of formaldehyde air concentration when compared to an empty test chamber. Conclusion: This work has shown that environmental variables and surface-to-volume ratios in the decontaminated space may affect the availability of formaldehyde in the air and, therefore, may affect decontamination effectiveness.
Introduction: This effort investigated formaldehyde vapor characteristics under various environmental conditions by the analyses of air samples collected over a time-course. This knowledge will help responders achieve desired formaldehyde exposure parameters for decontamination of affected spaces after a biological contamination incident. Methods: Prescribed masses of paraformaldehyde and formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor. Adsorbent cartridges were used to collect air samples from the test chamber at predetermined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. In addition, material demand for the formaldehyde was evaluated by inclusion of arrays of Plexiglas panels in the test chamber to determine the impact of varied surface areas within the test chamber. Temperature was controlled with a circulating water bath connected to a radiator and fan inside the chamber. Relative humidity was controlled with humidity fixed-point salt solutions and water vapor generated from evaporated water. Results: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations in the ambient temperature trials (approximately 22°C). The addition of clear Plexiglas panels to increase the surface area of the test chamber interior resulted in appreciable decreases of formaldehyde air concentration when compared to an empty test chamber. Conclusion: This work has shown that environmental variables and surface-to-volume ratios in the decontaminated space may affect the availability of formaldehyde in the air and, therefore, may affect decontamination effectiveness.
Aims:The purpose of this study was to evaluate the effects of ambient or altered environmental conditions on the inactivation of SARS-CoV-2 applied to materials common in libraries, archives and museums.
Methods and Results:Porous and non-porous materials (e.g. paper, plastic protective book cover) were inoculated with approximately 1 × 10 5 TCID 50 SARS CoV-2 (USA-WA1/2020), dried, placed within test chamber in either a stacked or unstacked configuration, and exposed to environmental conditions ranging from 4 to 29°C at 40 ± 10% relative humidity. The amount of infectious SARS-CoV-2 was then assessed at various timepoints from 0 to 10 days. Ambient conditions resulted in varying inactivation rates per material type. Virus inactivation rate decreased when materials were stacked or at colder temperatures. Virus inactivation rate increased when materials were unstacked or at warmer temperatures.Conclusions: SARS-CoV-2 at ambient conditions resulted in the inactivation of virus below limit of quantitation (LOQ) for all materials by Day 8. Warmer temperatures, for a subset of materials, increased SARS-CoV-2 inactivation, and all were
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.