Transceivers based on electro-absorption modulators are considered as a promising candidate for the next generation 400 GbE short-reach optical networks. They are capable of combining high bandwidth and low-power operation with a very compact layout, removing the need for traveling wave electrodes and dedicated 50 Ω termination. In this paper we demonstrate the first silicon-based EAM, in combination with an in-house developed SiGe BiCMOS transceiver chipset, capable of transmitting single-lane 100 Gb/s non-return-to-zero in realtime. Transmission up to 500 m of standard single mode fiber and 2 km of non-zero dispersion shifted fiber is demonstrated, assuming a forward-error coding scheme with a bit-error rate limit of 3.8×10 −3 is used. Due to the high line rate, transmission over longer fiber spans was limited by the chromatic distortion in the fiber. As a possible solution, electrical duobinary modulation is proposed as it is more resilient to this type of fiber distortion by reducing the required optical bandwidth. We show improved performance for longer fiber spans with a 100 Gb/s electrical duobinary link, resulting in real-time sub-FEC operation over more than 2 km of standard single-mode fiber without any digital signal processing. Finally, the possibility of a 100 Gb/s EAM-to-EAM link is investigated.
A new high-speed delta-sigma modulator (DSM) topology is proposed by cascading a bit reduction process with a multi-stage noise shaping MASH-1-1 DSM. This process converts the two-bit output sequence of the MASH-1-1 DSM to a singlebit sequence, merely compromising the DSM noise-shaping performance. Furthermore, the high clock frequency requirements are significantly relaxed by using parallel processing. This DSM topology facilitates the design of e.g. wideband software defined radio (SDR) transmitters and delta-sigma radio-over-fiber transmitters. Experimental results of the FPGA implementation show that the proposed low-pass DSM can operate at 21 GS/s, providing 520 MHz baseband bandwidth with 42.76 dB signal-to-noiseand-distortion ratio (SNDR) or 1.1 GHz bandwidth with 32.04 dB SNDR (based on continuous wave measurements). An all-digital transmitter based on this topology can generate 218.75 MBd 256-QAM over 200 m OM4 multimode fiber in real-time, with 7-GS/s sampling rate and an error vector magnitude below 1.89%.
Abstract-Electrical duobinary modulation is considered as a promising way to realize high capacity because of the low bandwidth requirement on the optical/electrical components and high tolerance towards chromatic dispersion. In this paper, we demonstrate a 100 Gb/s electrical duobinary transmission over 2 km standard single-mode fibre reaching a bit error rate under 7% HD-FEC threshold with the use of PRBS-7. This link is tested in real-time without any form of digital signal processing. Inhouse developed SiGe BiCMOS transmitter and receiver ICs are used to drive an electro-absorption modulated laser and decode the received signal from a PIN-photodiode. The performance of 50 Gb/s and 70 Gb/s non-return-to-zero and electrical duobinary transmission are investigated for comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.