Flocks of birds, schools of fish, insects swarms are examples of coordinated motion of a group that arises spontaneously from the action of many individuals. Here, we study flocking behavior from the viewpoint of multi-agent reinforcement learning. In this setting, a learning agent tries to keep contact with the group using as sensory input the velocity of its neighbors. This goal is pursued by each learning individual by exerting a limited control on its own direction of motion. By means of standard reinforcement learning algorithms we show that: i) a learning agent exposed to a group of teachers, i.e. hard-wired flocking agents, learns to follow them, and ii) that in the absence of teachers, a group of independently learning agents evolves towards a state where each agent knows how to flock. In both scenarios, i) and ii), the emergent policy (or navigation strategy) corresponds to the polar velocity alignment mechanism of the well-known Vicsek model. These results show that a) such a velocity alignment may have naturally evolved as an adaptive behavior that aims at minimizing the rate of neighbor loss, and b) prove that this alignment does not only favor (local) polar order, but it corresponds to best policy/strategy to keep group cohesion when the sensory input is limited to the velocity of neighboring agents. In short, to stay together, steer together.
We have carried out a Monte Carlo simulation of a modified version of Vicsek model for the motion of self-propelled particles in two dimensions. In this model the neighborhood of interaction of a particle is a sector of the circle with the particle at the center (rather than the whole circle as in the original Vicsek model). The sector is centered along the direction of the velocity of the particle, and the half-opening angle of this sector is called the 'view-angle'. We vary the view-angle over its entire range and study the change in the nature of the collective motion of the particles. We find that ordered collective motion persists down to remarkably small view-angles. And at a certain critical view-angle the collective motion of the system undergoes a first order phase transition to a disordered state. We also find that the reduction in the view-angle can in fact increase the order in the system significantly. We show that the directionality of the interaction, and not only the radial range of the interaction, plays an important role in the determination of the nature of the above phase transition.
We consider the flocking of self-propelling agents in two dimensions, each of which communicates with its neighbors within a limited vision-cone. Also, the communication occurs with some time-delay. The communication among the agents are modeled by Vicsek rules. In this study we explore the combined effect of non-reciprocal interaction (induced by limited vision-cone) among the agents and the presence of delay in the interactions on the dynamical pattern formation within the flock. We find that under these two influences, without any position-based attractive interactions or confining boundaries, the agents can spontaneously condense into "drops". Though the agents are in motion within the drop, the drop as a whole is pinned in space. We find that this novel state of the flock has a well-defined order and it is stabilized by the noise present in the system.
Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.