Advanced protein structure prediction methods combined with structure modeling show that the mammalian proteins, described until now as calcium-activated chloride channels (CLCAs), appear in fact to be membrane anchored metal-dependent hydrolases, possibly proteases. A metallohydrolase structural domain was predicted, unexpectedly, in the CLCA sequences. The well-conserved active site in the modeled structure of this hydrolase domain allows the prediction of catalytic action similar to that of metalloproteases. A number of protein structure prediction methods suggest the overall fold of the N-terminal hydrolase domain to be most similar to that of zinc metalloproteases (zincins), notably matrixins. This is confirmed by analysis of the three-dimensional structure model of the predicted CLCA1 hydrolase domain built using the known structure of the MMP-11 catalytic domain. Fragments of CLCA1 corresponding to the modeled hydrolase domain were expressed in Escherichia coli, and the resulting proteins were readily refolded into monomeric soluble protein, indicating formation of stable independent domains. The homology model was used to predict putative substrate sequences. Homologs of mammalian CLCA genes were detected in the genomes of a vast array of multicellular animals: lower vertebrates, tunicates, insects, crustaceans, echinoderms, and flatworms. The hydrolase prediction is discussed in the context of published experimentally determined effects of CLCA proteins on chloride conductance. Altered proteolytic processing of full-length CLCA1 containing a mutation abolishing the predicted hydrolase activity is shown as initial experimental evidence for a role of the hydrolase domain in processing of mature full-length CLCA1. The hydrolase prediction together with the presented experimental data add to doubts about the function of CLCAs as chloride channels and strengthen the hypothesis of channel-activating and/or channel-accessory roles.
We have characterized the regulation of nuclear factors involved in transcriptional control of the interleukin-2 (IL-2) promoter-enhancer activity in Jurkat T cells stimulated with superantigen presented on HLA-DR transfectants combined with the ligands LFA-3 (CD58) and B7-1 (CD80). Gel shift analyses showed that NF-AT was strongly induced in LFA-3-costimulated Jurkat T cells, suggesting that NF-AT is a key target nuclear factor for the CD2-LFA-3 pathway. Studies using HLA-DR-B7-1-LFA-3 triple transfectants showed that the LFA-3-induced NF-AT DNA binding activity was negatively regulated by B7-1 costimulation. In contrast, induction of a CD28 response complex containing only c-Rel proteins was seen after B7-1 costimulation. Both LFA-3 costimulation and B7-1 costimulation induced the AP-1 and NF-B nuclear factors. Distinct compositions of the NF-AT complexes were seen in B7-1-and LFA-3-costimulated cells. LFA-3 induced primarily Jun-D, Fra-1, and Fra-2, while B7-1 induced June-D-Fos complexes. In contrast, AP-1 and NF-B complexes induced in B7-1-and LFA-3-costimulated T cells showed similar contents. Transient transfection of Jurkat T cells with a construct encoding the IL-2 enhancer-promoter region (position ؊500 to ؉60) linked to a luciferase reporter gene revealed that B7-1 costimulation was required to induce strong transcriptional activity. Combined B7-1-LFA-3 costimulation resulted in a synergistic increase in IL-2 transcriptional activity. Multimers of the AP-1, NF-AT, NF-B, and CD28 response elements showed distinct kinetics and activity after LFA-3 and B7-1 costimulation and revealed that B7-1 and LFA-3 converge to superinduce transcriptional activity of the AP-1, NF-AT, and CD28 response elements. Transcriptional studies with an IL-2 enhancerpromoter carrying a mutation in the CD28 response element site revealed that the activity was reduced by 80% after B7-1 and B7-1-LFA-3 costimulation whereas the transcriptional activity induced by LFA-3 was unaffected. Our data strongly suggest a selectivity in induction of nuclear factors by the CD2-LFA-3 and CD28-B7-1 pathways. This selectivity may contribute to regulation of the levels of IL-2 induced by LFA-3 and B7-1 costimulation and favor autocrine and paracrine T-cell responses, respectively.
Internalization of the infectious fraction of human adenovirus type 2 into HeLa cells was followed by a quantitative internalization assay. Treatments known to selectively block receptor-mediated endocytosis reduced the internalization of infectious virus to an extent close to the reduction of endocytosis of transferrin. This suggests that one of the first steps in the infectious cycle of adenovirus type 2 is internalization by the coated-pit and-vesicle pathway. An obligate step for animal viruses to initiate a successful infection is the penetration of the host cell plasma membrane. Enveloped viruses have been described to gain access to the cell by fusion of the viral membrane and the plasma membrane with an accompanying release of the nucleocapsid into the cytoplasm (8, 19). The membrane fusion is mediated by certain glycoproteins on the virus surface, which act either directly on the cell surface, as in the case of,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.