Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.
The etiologic agent of granulocytic anaplasmosis, Anaplasma phagocytophilum, has a circum-global distribution within the northern hemisphere and shows a host species predilection that varies by the geographic region in which the disease is found. Adaptation by the bacterium to a host species potentially contributes to the variation found worldwide but this is confounded by the bacterium's relationship with its tick vectors, all of which belong to the Ixodes ricinus group. We tested the hypothesis that tick vector species collected from geographic regions sympatric with particular A. phagocytophilum strains will show evidence of a higher degree of vector competence than will tick species and allopatric A. phagocytophilum strains. A reciprocal cross-transmission experiment was performed using an eastern and a western North American strain of A. phagocytophilum (Webster and MRK, respectively) and the two tick species, I. scapularis and I. pacificus, most commonly associated with human and animal transmission of the bacteria in the United States. The western tick, I. pacificus, showed a significantly higher vector competence for A. phagocytophilum than I. scapularis and the eastern isolate, Webster, was more transmissible than its western counterpart, MRK. These results indicate that geographic variation in host susceptibility to A. phagocytophilum strains may play a more important role in the epidemiology of granulocytic anaplasmosis than does the competence of its tick vectors to transmit the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.