Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, mono-center studies indicate that both structural magnetic resonance imaging (MRI) and functional MRI biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. Here, we used MRI data of 189 depressed patients from seven participating centers of the Global ECT-MRI Research Collaboration (GEMRIC) to develop and validate neuroimaging biomarkers for ECT outcome in a multi-center setting. We used multimodal data (i.e., clinical, structural MRI and resting-state functional MRI) and evaluated which data modalities or combinations thereof could provide the best predictions for treatment response (≥50% symptom reduction) or remission (minimal symptoms after treatment) using a support vector machine (SVM) classifier. Remission classification using a combination of gray matter volume with functional connectivity led to good performing models with 0.82-0.84 area under the curve (AUC) when trained and tested on samples coming from all centers, and remained acceptable when validated on other centers with 0.71-0.73 AUC. These results show that multimodal neuroimaging data is able to provide good prediction of remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. This suggests that these biomarkers are robust, indicating that future development of a clinical decision support tool applying these biomarkers may be feasible.
Background
Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting.
Methods
Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier.
Results
Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC).
Conclusions
These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
We describe a case of an adolescent male with Niemann-Pick Type C (NP-C), a neurodegenerative lysosomal lipid storage disorder, who presented with recurrent catatonia which required repeated treatment with electroconvulsive therapy (ECT). During the ECT-course, seizure threshold increased substantially, leading to questions about the influence of NP-C on neuronal excitability. In this exemplary ECT-patient, NP-C was diagnosed not until after the first ECT-course when initial psychopharmacology for catatonia had failed and antipsychotics and benzodiazepines showed significant side-effects. Clinicians should be aware of NP-C in patients referred for ECT, especially in the case of treatment resistance, neurological symptoms and intolerance of psychopharmacological drugs. As was shown in our NP-C patient, ECT can be repeatedly effective for catatonic features. In the literature, effectiveness of ECT in patients with NP-C has sparsely been reported. This case demonstrates that detection of NP-C is beneficial for patients because more optimal treatment with ECT can be provided earlier without further exposure to side-effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.