According to theoretical studies, narrow graphene nanoribbons with atomically precise armchair edges and widths of o2 nm have a bandgap comparable to that in silicon (1.1 eV), which makes them potentially promising for logic applications. Different top-down fabrication approaches typically yield ribbons with width 410 nm and have limited control over their edge structure. Here we demonstrate a novel bottom-up approach that yields gram quantities of high-aspect-ratio graphene nanoribbons, which are only B1 nm wide and have atomically smooth armchair edges. These ribbons are shown to have a large electronic bandgap of B1.3 eV, which is significantly higher than any value reported so far in experimental studies of graphene nanoribbons prepared by top-down approaches. These synthetic ribbons could have lengths of 4100 nm and self-assemble in highly ordered few-micrometer-long 'nanobelts' that can be visualized by conventional microscopy techniques, and potentially used for the fabrication of electronic devices.
Titanium trisulfide (TiS3) is a promising layered semiconductor material. Several-mm-long TiS3 whiskers can be conveniently grown by the direct reaction of titanium and sulfur. In this study, we exfoliated these whiskers using the adhesive tape approach and fabricated few-layered TiS3 field-effect transistors (FETs). The TiS3 FETs showed an n-type electronic transport with room-temperature field-effect mobilities of 18-24 cm(2) V(-1) s(-1) and ON/OFF ratios up to 300. We demonstrate that TiS3 is compatible with the conventional atomic layer deposition (ALD) procedure for Al2O3. ALD of alumina on TiS3 FETs resulted in mobility increase up to 43 cm(2) V(-1) s(-1), ON/OFF ratios up to 7000, and much improved subthreshold swing characteristics. This study shows that TiS3 is a competitive electronic material in the family of two-dimensional (2D) transition metal chalcogenides and can be considered for emerging device applications.
Narrow atomically precise graphene nanoribbons hold great promise for electronic and optoelectronic applications, but the previously demonstrated nanoribbon-based devices typically suffer from low currents and mobilities. In this study, we explored the idea of lateral extension of graphene nanoribbons for improving their electrical conductivity. We started with a conventional chevron graphene nanoribbon, and designed its laterally extended variant. We synthesized these new graphene nanoribbons in solution and found that the lateral extension results in decrease of their electronic bandgap and improvement in the electrical conductivity of nanoribbon-based thin films. These films were employed in gas sensors and an electronic nose system, which showed improved responsivities to low molecular weight alcohols compared to similar sensors based on benchmark graphitic materials, such as graphene and reduced graphene oxide, and a reliable analyte recognition. This study shows the methodology for designing new atomically precise graphene nanoribbons with improved properties, their bottom-up synthesis, characterization, processing and implementation in electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.