The conformational switch from open to closed of the flexible loop 6 of triosephosphate isomerase (TIM) is essential for the catalytic properties of TIM. Using a directed evolution approach, active variants of chicken TIM with a mutated C-terminal hinge tripeptide of loop 6 have been generated (Sun,J. and Sampson,N.S., Biochemistry, 1999, 38, 11474-11481). In chicken TIM, the wild-type C-terminal hinge tripeptide is KTA. Detailed enzymological characterization of six variants showed that some of these (LWA, NPN, YSL, KTK) have decreased catalytic efficiency, whereas others (KVA, NSS) are essentially identical with wild-type. The structural characterization of these six variants is reported. No significant structural differences compared with the wild-type are found for KVA, NSS and LWA, but substantial structural adaptations are seen for NPN, YSL and KTK. These structural differences can be understood from the buried position of the alanine side chain in the C-hinge position 3 in the open conformation of wild-type loop 6. Replacement of this alanine with a bulky side chain causes the closed conformation to be favored, which correlates with the decreased catalytic efficiency of these variants. The structural context of loop 6 and loop 7 and their sequence conservation in 133 wild-type sequences is also discussed.
A monomeric variant of triosephosphate isomerase (TIM) with a new engineered binding groove has been characterized further. In this variant (ml8bTIM), the phosphate binding loop had been shortened, causing the binding site to be much more extended. Here, it is reported that in the V233A variant of ml8bTIM (A-TIM), three important properties of the wild-type TIM active site have been restored: (i) the structural properties of loop-7, (ii) the binding site of a conserved water molecule between loop-7 and loop-8 and (iii) the binding site of the phosphate moiety. It is shown that the active site of A-TIM can bind TIM transition state analogs and suicide inhibitors competently. It is found that the active site geometry of the A-TIM complexes is less compact and more solvent exposed, as in wild-type TIM. This correlates with the observation that the catalytic efficiency of A-TIM for interconverting the TIM substrates is too low to be detected. It is also shown that the A-TIM active site can bind compounds which do not bind to wild-type TIM and which are completely different from the normal TIM substrate, like a citrate molecule. The binding of this citrate molecule is stabilized by hydrogen bonding interactions with the new binding groove.
Crystallographic binding studies have been carried out to probe the active-site binding properties of a monomeric variant (A-TIM) of triosephosphate isomerase (TIM). These binding studies are part of a structure-based directed-evolution project aimed towards changing the substrate specificity of monomeric TIM and are therefore aimed at finding binders which are substrate-like molecules. A-TIM has a modified more extended binding pocket between loop-7 and loop-8 compared with wild-type TIM. The A-TIM crystals were grown in the presence of citrate, which is bound in the active site of each of the two molecules in the asymmetric unit. In this complex, the active-site loops loop-6 and loop-7 adopt the closed conformation, similar to that observed in liganded wild-type TIM. Extensive crystal-soaking protocols have been developed to flush the bound citrate out of the active-site pocket of both molecules and the crystal structure shows that the unliganded open conformation of the A-TIM active site is the same as in unliganded wild-type TIM. It is also shown that sulfonate compounds corresponding to the transition-state analogue 2-phosphoglycolate bind in the active site, which has a closed conformation. It is also shown that the new binding pocket of A-TIM can bind 3-phosphoglycerate (3PGA; an analogue of a C4-sugar phosphate) and 4-phospho-D-erythronohydroxamic acid (4PEH; an analogue of a C5-sugar phosphate). Therefore, these studies have provided a rationale for starting directed-evolution experiments aimed at generating the catalytic properties of a C5-sugar phosphate isomerase on the A-TIM framework.
Oxidative protein folding in the endoplasmic reticulum is catalyzed by the protein disulfide isomerase family of proteins. Of the 20 recognized human family members, the structures of eight have been deposited in the PDB along with domains from six more. Three members of this family, ERp18, anterior gradient protein 2 (AGR2) and anterior gradient protein 3 (AGR3), are single-domain proteins which share sequence similarity. While ERp18 has a canonical active-site motif and is involved in native disulfide-bond formation, AGR2 and AGR3 lack elements of the active-site motif found in other family members and may both interact with mucins. In order to better define its function, the structure of AGR3 is required. Here, the recombinant expression, purification, crystallization and crystal structure of human AGR3 are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.