The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Prepulse inhibition (PPI) test has been widely used to evaluate sensorimotor gating. In humans, deficits in this mechanism are measured through the orbicularis muscle response using electromyography (EMG). Although this mechanism can be modulated by several brain structures and is impaired in some pathologies as schizophrenia and bipolar disorder, neural PPI evaluation is rarely performed in humans. Since eye blinks are a consequence of PPI stimulation, they strongly contaminate the electroencephalogram (EEG) signal. This paper describes a method to reduce muscular artifacts and enable neural PPI assessment through EEG in parallel to muscular PPI evaluation using EMG. Both types of signal were simultaneously recorded in 22 healthy subjects. PPI was evaluated by the acoustical startle response with EMG and by the P2-N1 event-related potential (ERP) using EEG in Fz, Cz, and Pz electrodes. In order to remove EEG artifacts, Independent Component Analysis (ICA) was performed using two methods. Firstly, visual inspection discarded components containing artifact characteristics as ocular and tonic muscle artifacts. The second method used visual inspection as gold standard to validate parameters in an automated component selection using the SASICA algorithm. As an outcome, EEG artifacts were effectively removed and equivalent neural PPI evaluation performance was obtained using both methods, with subjects exhibiting consistent neural as well as muscular PPI. This novel method improves PPI test, enabling neural gating mechanisms assessment within the latency of 100–200 ms, which is not evaluated by other sensory gating tests as P50 and mismatch negativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.